155 resultados para LEFT VENTRICULAR HYPERTROPHY
Resumo:
Percutaneous transluminal coronary angioplasty (PTCA) is a widely accepted treatment of symptomatic coronary heart disease providing prompt and prolonged clinical, improvement in most patients. We have examined the value of this therapy in a group of 91 patients in their eighth decade treated by 133 consecutive angioplasties. Most patients had refractory or instable angor in spite of optimal pharmacotherapy. Multivessel disease was present in 67% and maintained left-ventricular function in 92% of the patients. The angiographic success rate of PTCA was 84%; technical failures occurred in 12% and adverse events in 14%. Two patients died. The rate of symptomatic restenosis was 24%. Survival and patients free of myocardial events were at 89% and 60%, respectively, estimated by Kaplan-Meier analysis. PTCA is an efficient and acceptable treatment for the elderly patient with severe and drug-resistant angina. Two years after PTCA the majority of patients was asymptomatic.
Resumo:
Catopril, an inhibitor of angiotensin converting enzyme, was given orally during cardiac catheterisation to 6 normotensive patients with refractory congestive heart-failure. 60--180 minutes after administration of 25 mg captopril, arterial pressure fell by 25%, cardiac index rose by 38%, and left-ventricular pressure and right-atrial pressure fell by 25% and 40% respectively. Plasma-renin activity rose while plasma noradrenaline and aldosterone fell. These data suggest that, in the short term, captopril can reduce both preload and afterload, and improve cardiac function, in refractory congestive heart-failure.
Compressed Sensing Single-Breath-Hold CMR for Fast Quantification of LV Function, Volumes, and Mass.
Resumo:
OBJECTIVES: The purpose of this study was to compare a novel compressed sensing (CS)-based single-breath-hold multislice magnetic resonance cine technique with the standard multi-breath-hold technique for the assessment of left ventricular (LV) volumes and function. BACKGROUND: Cardiac magnetic resonance is generally accepted as the gold standard for LV volume and function assessment. LV function is 1 of the most important cardiac parameters for diagnosis and the monitoring of treatment effects. Recently, CS techniques have emerged as a means to accelerate data acquisition. METHODS: The prototype CS cine sequence acquires 3 long-axis and 4 short-axis cine loops in 1 single breath-hold (temporal/spatial resolution: 30 ms/1.5 × 1.5 mm(2); acceleration factor 11.0) to measure left ventricular ejection fraction (LVEFCS) as well as LV volumes and LV mass using LV model-based 4D software. For comparison, a conventional stack of multi-breath-hold cine images was acquired (temporal/spatial resolution 40 ms/1.2 × 1.6 mm(2)). As a reference for the left ventricular stroke volume (LVSV), aortic flow was measured by phase-contrast acquisition. RESULTS: In 94% of the 33 participants (12 volunteers: mean age 33 ± 7 years; 21 patients: mean age 63 ± 13 years with different LV pathologies), the image quality of the CS acquisitions was excellent. LVEFCS and LVEFstandard were similar (48.5 ± 15.9% vs. 49.8 ± 15.8%; p = 0.11; r = 0.96; slope 0.97; p < 0.00001). Agreement of LVSVCS with aortic flow was superior to that of LVSVstandard (overestimation vs. aortic flow: 5.6 ± 6.5 ml vs. 16.2 ± 11.7 ml, respectively; p = 0.012) with less variability (r = 0.91; p < 0.00001 for the CS technique vs. r = 0.71; p < 0.01 for the standard technique). The intraobserver and interobserver agreement for all CS parameters was good (slopes 0.93 to 1.06; r = 0.90 to 0.99). CONCLUSIONS: The results demonstrated the feasibility of applying the CS strategy to evaluate LV function and volumes with high accuracy in patients. The single-breath-hold CS strategy has the potential to replace the multi-breath-hold standard cardiac magnetic resonance technique.
Resumo:
High-altitude destinations are visited by increasing numbers of children and adolescents. High-altitude hypoxia triggers pulmonary hypertension that in turn may have adverse effects on cardiac function and may induce life-threatening high-altitude pulmonary edema (HAPE), but there are limited data in this young population. We, therefore, assessed in 118 nonacclimatized healthy children and adolescents (mean ± SD; age: 11 ± 2 yr) the effects of rapid ascent to high altitude on pulmonary artery pressure and right and left ventricular function by echocardiography. Pulmonary artery pressure was estimated by measuring the systolic right ventricular to right atrial pressure gradient. The echocardiography was performed at low altitude and 40 h after rapid ascent to 3,450 m. Pulmonary artery pressure was more than twofold higher at high than at low altitude (35 ± 11 vs. 16 ± 3 mmHg; P < 0.0001), and there existed a wide variability of pulmonary artery pressure at high altitude with an estimated upper 95% limit of 52 mmHg. Moreover, pulmonary artery pressure and its altitude-induced increase were inversely related to age, resulting in an almost twofold larger increase in the 6- to 9- than in the 14- to 16-yr-old participants (24 ± 12 vs. 13 ± 8 mmHg; P = 0.004). Even in children with the most severe altitude-induced pulmonary hypertension, right ventricular systolic function did not decrease, but increased, and none of the children developed HAPE. HAPE appears to be a rare event in this young population after rapid ascent to this altitude at which major tourist destinations are located.
Resumo:
Résumé Les agents pathogènes responsables d'infection entraînent chez l'hôte deux types de réponses immunes, la première, non spécifique, dite immunité innée, la seconde, spécifique à l'agent concerné, dite immunité adaptative. L'immunité innée, qui représente la première ligne de défense contre les pathogènes, est liée à la reconnaissance par les cellules de l'hôte de structures moléculaires propres aux micro-organismes (« Pathogen-Associated Molecular Patterns », PAMPs), grâce à des récepteurs membranaires et cytoplasmiques (« Pattern Recognition Receptors », PRRs) identifiant de manière spécifique ces motifs moléculaires. Les récepteurs membranaires impliqués dans ce processus sont dénommés toll-like récepteurs, ou TLRS. Lorsqu'ils sont activés par leur ligand spécifique, ces récepteurs activent des voies de signalisation intracellulaires initiant la réponse inflammatoire non spécifique et visant à éradiquer l'agent pathogène. Les deux voies de signalisation impliquées dans ce processus sont la voie des « Mitogen-Activated Protein Kinases » (MAPKs) et celle du « Nuclear Factor kappaB » (NF-κB), dont l'activation entraîne in fine l'expression de protéines de l'inflammation dénommées cytokines, ainsi que certaines enzymes produisant divers autres médiateurs inflammatoires. Dans certaines situations, cette réponse immune peut être amplifiée de manière inadéquate, entraînant chez l'hôte une réaction inflammatoire systémique exagérée, appelée sepsis. Le sepsis peut se compliquer de dysfonctions d'organes multiples (sepsis sévère), et dans sa forme la plus grave, d'un collapsus cardiovasculaire, définissant le choc septique. La défaillance circulatoire du choc septique touche les vaisseaux sanguins d'une part, le coeur d'autre part, réalisant un tableau de «dysfonction cardiaque septique », dont on connaît mal les mécanismes pathogéniques. Les bactéries à Gram négatif peuvent déclencher de tels phénomènes, notamment en libérant de l'endotoxine, qui active les voies de l'immunité innée par son interaction avec un toll récepteur, le TLR4. Outre l'endotoxine, la plupart des bactéries à Gram négatif relâchent également dans leur environnement une protéine, la flagelline, qui est le constituant majeur du flagelle bactérien, organelle assurant la mobilité de ces micro-organismes. Des données récentes ont indiqué que la flagelline active, dans certaines cellules, les voies de l'immunité innée en se liant au récepteur TLRS. On ne connaît toutefois pas les conséquences de l'interaction flagelline-TLRS sur le développement de l'inflammation et des dysfonctions d'organes au cours du sepsis. Nous avons par conséquent élaboré le présent travail en formulant l'hypothèse que la flagelline pourrait déclencher une telle inflammation et représenter ainsi un médiateur potentiel de la dysfonction d'organes au cours du sepsis à Gram négatif, en nous intéressant plus particulièrement àl'inflammation et à la dysfonction cardiaque. Dans la première partie de ce travail, nous avons étudié les effets de la flagelline sur l'activation du NF-κB et des MAPKs, et sur l'expression de cytokines inflammatoires au niveau du myocarde in vitro (cardiomyocytes en culture) et in vivo (injection de flagelline recombinante à des souris). Nous avons observé tout d'abord que le récepteur TLRS est fortement exprimé au niveau du myocarde. Nous avons ensuite démontré que la flagelline active la voie du NF-κB et des MAP kinases (p38 et JNK), stimule la production de cytokines et de chemokines inflammatoires in vitro et in vivo, et entraîne l'activation de polynucléaires neutrophiles dans le tissu cardiaque in vivo. Finalement, au plan fonctionnel, nous avons pu montrer que la flagelline entraîne une dilatation et une réduction aiguë de la contractilité du ventricule gauche chez la souris, reproduisant les caractéristiques de la dysfonction cardiaque septique. Dans la deuxième partie, nous avons déterminé la distribution du récepteur TLRS dans les autres organes majeurs de la souris (poumon, foie, intestin et rein}, et avons caractérisé dans ces organes l'effet de la flagelline sur l'activation du NF-κB et des MAPKs, l'expression de cytokines, et l'induction de l'apoptose. Nous avons démontré que le TLRS est exprimé de façon constitutive dans ces organes, et que l'injection de flagelline y déclenche les cascades de l'immunité innée et de processus apoptotiques. Finalement, nous avons également déterminé que la flagelline entraîne une augmentation significative de multiples cytokines dans le plasma une à six heures après son injection. En résumé, nos données démontrent que la flagelline bactérienne (a) entraîne une inflammation et une dysfonction importantes du myocarde et (b) active de manière très significative les mécanismes d'immunité innée dans les principaux organes et entraîne une réponse inflammatoire systémique. Par conséquent, la flagelline peut représenter un médiateur puissant de l'inflammation et de la dysfonction d'organes, notamment du coeur, au cours du choc septique déclenché par les bactéries à Gram négatif. Summary Pathogenic microorganisms trigger two kinds of immune responses in the host. The first one is immediate and non-specific and is termed innate immunity, whereas the second one, specifically targeted at the invading agent, is termed adaptative immunity. Innate immunity, which represents the first line of defense against invading pathogens, confers the host the ability to recognize molecular structures common to many microbial pathogens, ("Pathogen-Associated Molecular Patterns", PAMPs), through cytosolic or membrane-associated receptors ("Pattern Recognition Receptors", PRRs), the latter being represented by a family of receptors termed "toll-like receptors or TLRs". Once activated by the binding of their specific ligand, these receptors activate intracellular signaling pathways, which initiate the non-specific inflammatory response aimed at eradicating the pathogens. The two pathways implicated in this process are the mitogen-activated protein kinases (MAPK) and the nuclear factor kappa B (NF-κB) signaling pathways, whose activation elicit in fine the expression of inflammatory proteins termed cytokines, as well as various enzymes producing a wealth of additional inflammatory mediators. In some circumstances, the innate immune response can become amplified and dysregulated, triggering an overwhelming systemic inflammatory response in the host, identified as sepsis. Sepsis can be associated with multiple organ dysfunction (severe sepsis), and in its most severe form, with cardiovascular collapse, defming septic shock. The cardiovascular failure associated with septic shock affects blood vessels as well as the heart, resulting in a particular form of acute heart failure termed "septic cardiac dysfunction ", whose pathogenic mechanisms remain partly undefined. Gram-negative bacteria can initiate such phenomena, notably by releasing lipopolysaccharide (LPS), which activates innate immune signaling by interacting with its specific toll receptor, the TLR4. Besides LPS, most Gram-negative bacteria also release flagellin into their environment, which is the main structural protein of the bacterial flagellum, an appendage extending from the outer bacterial membrane, responsible for the motility of the microorganism. Recent data indicated that flagellin activate immune responses upon binding to its receptor, TLRS, in various cell types. However, the role of flagellin/TLRS interaction in the development of inflammation and organ dysfunction during sepsis is not known. Therefore, we designed the present work to address the hypothesis that flagellin might trigger such inflammatory responses and thus represent a potential mediator of organ dysfunction during Gram-negative sepsis, with a particular emphasis on cardiac inflammation and contractile dysfunction. In the first part of this work, we investigated the effects of flagellin on NF-κB and MAPK activation and the generation of pro-inflammatory mediators within the heart in vitro (cultured cardiomyocytes) and in vivo (injection of recombinant flagellin into mice). We first observed that TLRS protein is strongly expressed by the myocardium. We then demonstrated that flagellin activates NF-κB and MAP kinases (p38 and JNK), upregulates the transcription of pro-inflammatory cytokines and chemokines in vitro and in vivo, and stimulates the activation of polymorphonuclear neutrophils within the heart in vivo. Finally, we demonstrated that flagellin triggers acute cardiac dilation, and a significant reduction of left ventricular contractility, mimicking characteristics of clinical septic cardiac dysfunction. In the second part, we determined the TLRS distribution in other mice major organs (lung, liver, gut and kidney) and we characterized in these organs the effects of flagellin on NF-κB and MAPK activation, on the expression of pro-inflammatory çytokines, and on the induction of apoptosis. We demonstrated that TLRS protein is constitutively expressed and that flagellin activates prototypical innate immune responses and pro-apoptotic pathways in all these organs. Finally, we also observed that flagellin induces a significant increase of multiple cytokines in the plasma from 1 to 6 hours after its intravenous administration. Altogether, these data provide evidence that bacterial flagellin (a) triggers an important inflammatory response and an acute dysfunction of the myocardium, and (b) significantly activates the mechanisms of innate immunity in most major organs and elicits a systemic inflammatory response. In consequence, flagellin may represent a potent mediator of inflammation and multiple organ failure, notably cardiac dysfunction, during Gram-negative septic shock.
Resumo:
BACKGROUND: Both systolic and diastolic dysfunction have been observed in patients with anterolateral myocardial infarction. Diastolic dysfunction is related to disturbances in relaxation and diastolic filling. OBJECTIVE: To analyse cardiac rotation, regional shortening and diastolic relaxation in patients with anterolateral infarction. METHODS: Cardiac rotation and relaxation in controls and patients with chronic anterolateral infarction were assessed by myocardial tagging. Myocardial tagging is based on magnetic resonance imaging and allows us to label specific myocardial regions for imaging cardiac motion (rotation, translation and radial displacement). A rectangular grid was placed on the myocardium (basal, equatorial and apical short-axis plane) of each of 18 patients with chronic anterolateral infarction and 13 controls. Cardiac rotation, change in area and shortening of circumference were determined in each case. RESULTS: The left ventricle in controls performs a systolic wringing motion with a clockwise rotation at the base and a counterclockwise rotation at the apex when viewed from the apex. During relaxation a rotational motion in the opposite direction (namely untwisting) can be observed. In patients with anterolateral infarction, there is less systolic rotation at the apex and diastolic untwisting is delayed and prolonged in comparison with controls. In the presence of a left ventricular aneurysm (n = 4) apical rotation is completely lost. There is less shortening of circumference in infarcted and remote regions. CONCLUSIONS: The wringing motion of the myocardium might be an important mechanism involved in maintaining normal cardiac function with minimal expenditure of energy. This mechanism no longer operates in patients with left ventricular aneurysms and operates significantly less than normal in those with anterolateral hypokinaesia. Diastolic untwisting is significantly delayed and prolonged in patients with anterolateral infarction, which could explain the occurrence of diastolic dysfunction in these patients.
Resumo:
Transapical aortic valve replacement through an apical aneurysm is traditionally contraindicated because of the risk of severe systemic embolization when thrombi are present. However, a chronic fibrotic aneurysm without apical thrombi carries a low risk of distal embolization and can be safely employed for a transapical transcatheter aortic valve replacement in case of absence of an alternative access site (severe vascular disease, small vascular sizes and diseased calcified aorta). We illustrate our experience with a 73-year-old patient suffering from symptomatic aortic valve stenosis, coronary artery disease with occluded left anterior descending artery, left ventricular apical aneurysm and severe peripheral vascular disease, who successfully underwent a transapical 26 mm Sapien? XT stent-valve implantation through the fibrotic thin akinetic apical wall.
Resumo:
Postischemic recovery of contractile function is better in hearts from fasted rats than in hearts from fed rats. In this study, we examined whether feeding-induced inhibition of palmitate oxidation at the level of carnitine palmitoyl transferase I is involved in the mechanism underlying impaired recovery of contractile function. Hearts isolated from fasted or fed rats were submitted to no-flow ischemia followed by reperfusion with buffer containing 8 mM glucose and either 0.4 mM palmitate or 0.8 mM octanoate. During reperfusion, oxidation of palmitate was higher after fasting than after feeding, whereas oxidation of octanoate was not influenced by the nutritional state. In the presence of palmitate, recovery of left ventricular developed pressure was better in hearts from fasted rats. Substitution of octanoate for palmitate during reperfusion enhanced recovery of left ventricular developed pressure in hearts from fed rats. However, the chain length of the fatty acid did not influence diastolic contracture. The results suggest that nutritional variation of mitochondrial fatty acid transfer may influence postischemic recovery of contractile function.
Resumo:
OBJECTIVES: To evaluate long-term outcome of initial aortic valve intervention in a paediatric population with congenital aortic stenosis, and to determine risk factors associated with reintervention. PATIENTS AND METHODS: From 1985 to 2009, 77 patients with congenital aortic stenosis and a mean age of 5.8±5.6 years at diagnosis were followed up in our institution for 14.8±9.1 years. RESULTS: First intervention was successful with 86% of patients having a residual peak aortic gradient 1 regurgitation increased by 7%. Long-term survival after the first procedure was excellent, with 91% survival at 25 years. At a mean interval of 7.6±5.3 years, 30 patients required a reintervention (39%), mainly because of a recurrent aortic stenosis. Freedom from reintervention was 97, 89, 75, 53, and 42% at 1, 10, 15, 20, and 25 years, respectively. Predictors of reintervention were residual peak aortic gradient (p=0.0001), aortic regurgitation post-intervention >1 (p=0.02), prior balloon aortic valvuloplasty (p=0.04), and increased left ventricular posterior wall thickness (p=0.1). CONCLUSIONS: Aortic valve intervention is a safe and effective procedure for congenital aortic stenosis with excellent survival results. However, rate of reintervention is high and influenced by increased left ventricular posterior wall thickness pre-intervention, prior balloon valvuloplasty, higher residual peak systolic valve gradient, and more than mild regurgitation post-intervention. The study highlights that long-term follow-up is recommended for these patients.
Resumo:
Objectives: We are interested in the numerical simulation of the anastomotic region comprised between outflow canula of LVAD and the aorta. Segmenta¬tion, geometry reconstruction and grid generation from patient-specific data remain an issue because of the variable quality of DICOM images, in particular CT-scan (e.g. metallic noise of the device, non-aortic contrast phase). We pro¬pose a general framework to overcome this problem and create suitable grids for numerical simulations.Methods: Preliminary treatment of images is performed by reducing the level window and enhancing the contrast of the greyscale image using contrast-limited adaptive histogram equalization. A gradient anisotropic diffusion filter is applied to reduce the noise. Then, watershed segmentation algorithms and mathematical morphology filters allow reconstructing the patient geometry. This is done using the InsightToolKit library (www.itk.org). Finally the Vascular Model¬ing ToolKit (www.vmtk.org) and gmsh (www.geuz.org/gmsh) are used to create the meshes for the fluid (blood) and structure (arterial wall, outflow canula) and to a priori identify the boundary layers. The method is tested on five different patients with left ventricular assistance and who underwent a CT-scan exam.Results: This method produced good results in four patients. The anastomosis area is recovered and the generated grids are suitable for numerical simulations. In one patient the method failed to produce a good segmentation because of the small dimension of the aortic arch with respect to the image resolution.Conclusions: The described framework allows the use of data that could not be otherwise segmented by standard automatic segmentation tools. In particular the computational grids that have been generated are suitable for simulations that take into account fluid-structure interactions. Finally the presented method features a good reproducibility and fast application.
Resumo:
Morphological and functional effects of transmyocardial laser revascularization (TMLR) are analyzed in an acute setting on a porcine model. Ten channels were drilled in the left lateral wall of the heart of 15 pigs (mean weight, 73 +/- 4 kg) with a Holmium-YAG laser (wavelength: 2.1 mu, probe diameter: 1.75 mm). Echocardiographic control was performed before the TMLR procedure as well as 5 min and 30 min thereafter. Echocardiographic parameters were recorded in short-axis at the level of the laser channels, and included left ventricular ejection fraction, fractional shortening and segmental wall motility of the channels' area (scale 0-3: 0 = normal, 1 = hypokinesia, 2 = akinesia, 3 = dyskinesia). After sacrifice the lased region was sliced perpendicularly to the channels for histological and morphometrical analysis. Five minutes after the drilling of the channels, all the echocardiographic index worsened significantly in comparison with baseline values (p < 0.01). All recovered after 30 min and showed no difference with baseline values. Cross-section of the channel lesions measured 8.8 +/- 2.4 mm2 which is more than three times that of the probe (p < 0.01). In acute conditions, the lesions due to the TMLR probe are significantly larger than the probe itself and cause a transient drop of the segmental wall motility on a healthy myocardium. These results suggest that TMLR should be used cautiously in the clinical setting for patients with an impaired ventricular function.
Resumo:
Introduction: Nasal continuous positive airways pressure (n-CPAP) is an effective treatment in premature infants with respiratory distress. The cardio-pulmonary interactions secondary to n-CPAP are well studied in adults, but less well described in premature infants. We postulated that there could be important interactions with regard to the patent ductus arteriosus (PDA). Methods: Prospective study, approved by the local ethic committee. Premature infants less than 32 weeks gestation, _7 days-old, needing n-CPAP for respiratory distress, but without the need of additional oxygen were included in the study. Every patient had a first echocardiography with n-CPAP and then n-CPAP was retrieved. 3 hours later the echocardiography was repeated by the same investigator and then the patient replaced on n-CPAP. Results: 14 premature newborn were included, mean gestational age of 28 _ 2 weeks, mean weight 1.1 _ 0.3 Kg and height 39 _ 3 cm. Echocardiographic measurements are depicted in Table 1. Significant finding were observed between measurement on n- CPAP or without n-CPAP: on end diastolic left ventricular diameter (12.8 _ 1.6 mm vs. 13.5 _ 2 mm), on end systolic left ventricular diameter (8.4 _ 1.3 mm vs. 9.1 _ 1.5 mm), left atrium diameter (8.9 _ 2.2 mm vs. 10.4 _ 2.5 mm), maximal velocity on tricuspid valve (46 _ 10 cm/s vs. 51 _ 9 cm/s), calculated Qp (3.7 _ 0.8 L/min/m2 vs. 4.3 _ 0.8 L/min/m2). Only three patients have demonstrated a PDA during the study. Conclusion: Positive end expiratory pressure (Peep) has hemodynamic effects which are: reduction of systemic and pulmonary venous return as shown by the changes on tricuspid valve inflow,on the calculated Qp and finally on the diameter of the left atrium and left ventricle.We found in premature infants the same hemodynamic effects than those described in adults but with lower Peep values. This could be due to the particular elasticity and weakness of the thoracic wall of premature infants. Interestingly the flow through a PDA seems also to be diminished with Peep, but the number of patients is insufficient to conclude. Further investigation will be needed to better understand these interactions. Table 1. Echocardiographic measurement (mean (SD)). With n-CPAP Without n-CPAP p value RV ED diameter (mm) 6.3 (1.7) 6.04 (1.1) NS LV ED diameter (mm) 12.8 (1.6) 13.5 (2.0) _0.05 LV ES diameter (mm) 8.4 (1.3) 9.1 (1.5) _0.05 SF (%) 34 (5) 33 (6) NS Ao valve diameter (mm) 7.4 (1.3) 7.4 (1.2) NS LA diameter (mm) 8.9 (2.2) 10.4 (2.5) _0.05 Vmax Ao (cm/s) 70 (16) 71 (18) NS Vmax PV (cm/s) 69 (15) 72 (16) NS Vmax TV (cm/s) 46 (10) 51 (9) _0.05 Vmax MV (cm/s) 53 (17) 54 (18) NS Qp (L/min/m2) 3.7 (0.8) 4.3 (0.8) _0.05 Qs (L/min/m2) 4.0 (0.8) 4.0 (0.7) NS Qp/Qs 0.92 (0.14) 1.09 (0.23) _0.05 RV: right ventricle, LV: left ventricle, ED: end diastolic, ES: end systolic, SF: shortening fraction,Ao: aortic valve, LA: left atrium,Vmax: maximum Doppler Velocity, Qp: pulmonary output, Qs: systemic output, NS: non significant.
Resumo:
The importance of the right ventricle as a determinant of clinical symptoms, exercise capacity, peri-operative survival and postoperative outcome has been underestimated for a long time. Right ventricular ejection fraction has been used as a measure of right ventricular function but has been found to be dependent on loading conditions, ventricular interaction as well as on myocardial structure. Altered left ventricular function in patients with valvular disease influences right ventricular performance mainly by changes in afterload but also by ventricular interaction. Right ventricular function and regional wall motion can be determined with right ventricular angiography, radionuclide ventriculography, two-dimensional echocardiography or magnetic resonance imaging. However, the complex structure of the right ventricle and its pronounced translational movements render quantification difficult. True regional wall motion analysis is, however, possible with myocardial tagging based on magnetic resonance techniques. With this technique a baso-apical shear motion of the right ventricle was observed which was enhanced in patients with aortic stenosis.
Resumo:
A bioresorbable membrane made of sodium hyaluronate and carboxymethycellulose, has been reported to prevent peritoneal adhesion. This study was designed to test its efficiency in the prevention of pericardial adhesions. Two groups of six pigs (mean weight 72 +/- 8 kg) were chosen for the experiment. The heart was exposed through a left thoracotomy and a wide patch of pericardium was excised. In the test group (n = 6), the left ventricular area without pericardium was divided into two areas: area A where six stitches of Prolene were performed, and area B which was left intact. The membrane was applied on the both areas as well as on the adjacent area covered with pericardium (area C). In the control group (n = 6), the same protocol was performed except for the membrane application. The animals were sacrificed one month later. The adhesion status as well as the visibility of the coronary anatomy was assessed according to severity scores ranging from 0 to 3 for the adhesions and from 0 to 2 for the visibility. The difference between groups was considered significant when p < 0.05. The adhesion score of the area A was 1.7 +/- 0.5 in the test group versus 2.5 +/- 0.5 in the control group (p = 0.02) and the visibility score was 1.3 +/- 0.8 and 2 +/- 0 respectively (p = 0.07). In the area B, the adhesion score was 1 +/- 0 in the test group versus 2 +/- 0.6 in the control group (p = 0.03) and the visibility score was 0.7 +/- 0.5 and 2 +/- 0 respectively (p = 0.001). Lastly, in the area C, the adhesion score was 1 +/- 0 in both groups (n.s.) and the visibility score was 0.7 +/- 0.4 in the test group versus 0.5 +/- 0.5 in the control group (n.s.). In this animal model, the role of the bioresorbable membrane in the prevention of pericardial adhesions is limited to the areas without pericardial cover and without foreign material. The presence of foreign material neutralizes its effect.
Resumo:
BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.