205 resultados para L-NAME-induced hypertension
Resumo:
AIM: Genetic polymorphisms of the human angiotensinogen gene are frequent and may induce up to 30% increase of plasma angiotensinogen concentrations with a blood pressure increase of up to 5mmHg. Their role for the pathogenesis of human arterial hypertension remains unclear. High plasma angiotensinogen levels could increase the sensitivity to other blood pressure stressors. METHODS: Male transgenic rats with a 9-fold increase of plasma angiotensinogen concentrations and male non-transgenic rats aged 10 weeks were treated or not with NG-Nitro-L-arginine-methyl ester for 3 weeks in their drinking water (n=3/group). Systolic blood pressure and body weight were measured at baseline and at the end of the study when left ventricular weight and ventricular expression of angiotensin I-converting enzyme and procollagen Iα1 were determined (polymerase chain reaction). RESULTS: At baseline, transgenic rats had +18mmHg higher bood pressure and -8% lower body weight compared to non-transgenic rats (P<0.05) without significant changes for the vehicle groups throughout the study (P>0.05). NG-Nitro-L-arginine-methyl ester increased blood pressure, left ventricular weight and left ventricular weight indexed for body weight by +41%, +17.6% and +18.6% (P<0.05) in transgenic and +25%, +5.3% and +6.7% (P>0.05) in non-transgenic rats compared to untreated animals, respectively. Cardiac gene expression showed no differences between groups (P>0.05). CONCLUSION: Increased plasma angiotensinogen levels may sensitize to additional blood pressure stressors. Our preliminary results point towards an independent role of angiotensinogen in the pathogenesis of human hypertension and associated end-organ damage.
Resumo:
Despite the fact that mineralocorticoid receptor (MR) antagonist drugs such as spironolactone and eplerenone reduce the mortality in heart failure patients, there is, thus far, no unambiguous demonstration of a functional role of MR in cardiac cells. The aim of this work was to investigate the activation pathway(s) mediating corticosteroid-induced up-regulation of cardiac calcium current (ICa). In this study, using neonatal cardiomyocytes from MR or glucocorticoid receptor (GR) knockout (KO) mice, we show that MR is essential for corticosteroid-induced up-regulation of ICa. This study provides the first direct and unequivocal evidence for MR function in the heart.
Resumo:
Cardiac hypertrophy is frequent in chronic hypertension. The renin-angiotensin system, via its effector angiotensin II (Ang II), regulates blood pressure and participates in sustaining hypertension. In addition, a growing body of evidence indicates that Ang II acts also as a growth factor. However, it is still a matter of debate whether the trophic effect of Ang II can trigger cardiac hypertrophy in the absence of elevated blood pressure. To address this question, transgenic mice overexpressing the rat angiotensinogen gene, specifically in the heart, were generated to increase the local activity of the renin-angiotensin system and therefore Ang II production. These mice develop myocardial hypertrophy without signs of fibrosis independently from the presence of hypertension, demonstrating that local Ang II production is important in mediating the hypertrophic response in vivo.
Resumo:
Hypertension is highly prevalent in transplantation and affects all type of organs. With the introduction of calcineurin inhibitors as immunosuppressive drugs, acute allograft rejection episodes have been significantly reduced and hence patient and allograft survival rates have dramatically improved. However, cardiovascular complications have become an important cause of morbidity and mortality. Treating cardiovascular risk factors such as diabetes, dyslipidemia and hypertension seems obvious, however in this population, there is little evidence for specific blood pressure targets, or for the best strategy to achieve blood pressure control. The aim of this article is to review the epidemiology and physiopathology of hypertension in transplant recipients as well as its clinical management.
Resumo:
The discovery in 1988 of endothelin, the most potent human endogenous vasoconstrictor, has opened the race to the discovery of a new weapon against arterial hypertension. The development of the endothelin receptors antagonists (ERAs) and the demonstration of their efficacy in preclinical models initially raised a wave of enthusiasm, which was however tempered due to their unfavorable side effect profile. In this article we will review the phases of the development ERAs, and their current and future place as therapeutic tool against arterial hypertension.
Resumo:
Today two largely new approaches are available for the treatment of clinical hypertension. First, captopril, an orally active angiotensin converting enzyme inhibitor, makes possible chronic blockade of the renin-angiotensin system. This compound, given alone or in combination with a diuretic, normalizes the blood pressure of most hypertensive patients. Unfortunately, because captopril may induce serious adverse effects the use of this inhibitor must be restricted to patients with high blood pressure refractory to conventional antihypertensive drugs. Second, compounds such as verapamil and nifedipine are capable of producing a marked vasodilating effect by inhibiting the entry of calcium into the vascular smooth muscle cells. However, the role of calcium channel blockers in the treatment of hypertensive disease awaits more precise definition.
Resumo:
Guidelines for the treatment of hypertension recommend reducing blood pressure to below 140/90 mmHg. However, there is little to guide the clinician on which pharmacological strategy to pursue: monotherapy with stepped-care, sequential monotherapy, or the initial use of combination therapy. The STRATHE study was designed to clarify this issue by comparing the three strategies. A low-dose combination of perindopril/indapamide was significantly superior to either stepped-care or sequential monotherapy in terms of reducing systolic blood pressure and in the percentage of patients achieving normalisation without adverse effects. Pulse pressure showed a trend to greater reductions with the low-dose combination. Although there must be caution about extrapolating these results to other combinations, which may not have the same pharmacological properties, the STRATHE study has shown that initiating antihypertensive therapy with a low-dose combination has advantages over the two other classical therapeutic strategies.
Resumo:
Urate is the metabolic end point of purines in humans. Although supra-physiological plasma urate levels are associated with obesity, insulin resistance, dyslipidemia, and hypertension, a causative role is debated. We previously established a mouse model of hyperuricemia by liver-specific deletion of Glut9, a urate transporter that provides urate to the hepatocyte enzyme uricase. These LG9 knockout mice show mild hyperuricemia (120 μmol/l), which can be further increased by the urate precursor inosine. Here, we explored the role of progressive hyperuricemia on the cardiovascular function. Arterial blood pressure and heart rate were periodically measured by telemetry over 6 months in LG9 knockout mice supplemented with incremental amounts of inosine in a normal chow diet. This long-term inosine treatment elicited a progressive increase in uricemia up to 300 μmol/l; however, it did not modify heart rate or mean arterial blood pressure in LG9 knockout compared with control mice. Inosine treatment did not alter cardiac morphology or function measured by ultrasound echocardiography. However, it did induce mild renal dysfunction as revealed by higher plasma creatinine levels, lower glomerular filtration rate, and histological signs of chronic inflammation and fibrosis. Thus, in LG9 knockout mice, inosine-induced hyperuricemia was not associated with hypertension despite partial renal deficiency. This does not support a direct role of urate in the control of blood pressure.