117 resultados para Judicial process
Resumo:
Yeast vacuoles fragment and fuse in response to environmental conditions, such as changes in osmotic conditions or nutrient availability. Here we analyze osmotically induced vacuole fragmentation by time-lapse microscopy. Small fragmentation products originate directly from the large central vacuole. This happens by asymmetrical scission rather than by consecutive equal divisions. Fragmentation occurs in two distinct phases. Initially, vacuoles shrink and generate deep invaginations that leave behind tubular structures in their vicinity. Already this invagination requires the dynamin-like GTPase Vps1p and the vacuolar proton gradient. Invaginations are stabilized by phosphatidylinositol 3-phosphate (PI(3)P) produced by the phosphoinositide 3-kinase complex II. Subsequently, vesicles pinch off from the tips of the tubular structures in a polarized manner, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol-3,5-bisphosphate and the Fab1 complex. It is accelerated by the PI(3)P- and phosphatidylinositol 3,5-bisphosphate-binding protein Atg18p. Thus vacuoles fragment in two steps with distinct protein and lipid requirements.
Resumo:
In this article, the author provides a framework to guide¦research in emotional intelligence. Studies conducted up¦to the present bear on a conception of emotional intelligence¦as pertaining to the domain of consciousness and¦investigate the construct with a correlational approach.¦As an alternative, the author explores processes underlying¦emotional intelligence, introducing the distinction¦between conscious and automatic processing as a potential¦source of variability in emotionally intelligent¦behavior. Empirical literature is reviewed to support the¦central hypothesis that individual differences in emotional¦intelligence may be best understood by considering¦the way individuals automatically process emotional¦stimuli. Providing directions for research, the author¦encourages the integration of experimental investigation¦of processes underlying emotional intelligence with¦correlational analysis of individual differences and¦fosters the exploration of the automaticity component¦of emotional intelligence.
Resumo:
Given the cost constraints of the European health-care systems, criteria are needed to decide which genetic services to fund from the public budgets, if not all can be covered. To ensure that high-priority services are available equitably within and across the European countries, a shared set of prioritization criteria would be desirable. A decision process following the accountability for reasonableness framework was undertaken, including a multidisciplinary EuroGentest/PPPC-ESHG workshop to develop shared prioritization criteria. Resources are currently too limited to fund all the beneficial genetic testing services available in the next decade. Ethically and economically reflected prioritization criteria are needed. Prioritization should be based on considerations of medical benefit, health need and costs. Medical benefit includes evidence of benefit in terms of clinical benefit, benefit of information for important life decisions, benefit for other people apart from the person tested and the patient-specific likelihood of being affected by the condition tested for. It may be subject to a finite time window. Health need includes the severity of the condition tested for and its progression at the time of testing. Further discussion and better evidence is needed before clearly defined recommendations can be made or a prioritization algorithm proposed. To our knowledge, this is the first time a clinical society has initiated a decision process about health-care prioritization on a European level, following the principles of accountability for reasonableness. We provide points to consider to stimulate this debate across the EU and to serve as a reference for improving patient management.
Resumo:
This thesis is composed of three main parts. The first consists of a state of the art of the different notions that are significant to understand the elements surrounding art authentication in general, and of signatures in particular, and that the author deemed them necessary to fully grasp the microcosm that makes up this particular market. Individuals with a solid knowledge of the art and expertise area, and that are particularly interested in the present study are advised to advance directly to the fourth Chapter. The expertise of the signature, it's reliability, and the factors impacting the expert's conclusions are brought forward. The final aim of the state of the art is to offer a general list of recommendations based on an exhaustive review of the current literature and given in light of all of the exposed issues. These guidelines are specifically formulated for the expertise of signatures on paintings, but can also be applied to wider themes in the area of signature examination. The second part of this thesis covers the experimental stages of the research. It consists of the method developed to authenticate painted signatures on works of art. This method is articulated around several main objectives: defining measurable features on painted signatures and defining their relevance in order to establish the separation capacities between groups of authentic and simulated signatures. For the first time, numerical analyses of painted signatures have been obtained and are used to attribute their authorship to given artists. An in-depth discussion of the developed method constitutes the third and final part of this study. It evaluates the opportunities and constraints when applied by signature and handwriting experts in forensic science. A brief summary covering each chapter allows a rapid overview of the study and summarizes the aims and main themes of each chapter. These outlines presented below summarize the aims and main themes addressed in each chapter. Part I - Theory Chapter 1 exposes legal aspects surrounding the authentication of works of art by art experts. The definition of what is legally authentic, the quality and types of the experts that can express an opinion concerning the authorship of a specific painting, and standard deontological rules are addressed. The practices applied in Switzerland will be specifically dealt with. Chapter 2 presents an overview of the different scientific analyses that can be carried out on paintings (from the canvas to the top coat). Scientific examinations of works of art have become more common, as more and more museums equip themselves with laboratories, thus an understanding of their role in the art authentication process is vital. The added value that a signature expertise can have in comparison to other scientific techniques is also addressed. Chapter 3 provides a historical overview of the signature on paintings throughout the ages, in order to offer the reader an understanding of the origin of the signature on works of art and its evolution through time. An explanation is given on the transitions that the signature went through from the 15th century on and how it progressively took on its widely known modern form. Both this chapter and chapter 2 are presented to show the reader the rich sources of information that can be provided to describe a painting, and how the signature is one of these sources. Chapter 4 focuses on the different hypotheses the FHE must keep in mind when examining a painted signature, since a number of scenarios can be encountered when dealing with signatures on works of art. The different forms of signatures, as well as the variables that may have an influence on the painted signatures, are also presented. Finally, the current state of knowledge of the examination procedure of signatures in forensic science in general, and in particular for painted signatures, is exposed. The state of the art of the assessment of the authorship of signatures on paintings is established and discussed in light of the theoretical facets mentioned previously. Chapter 5 considers key elements that can have an impact on the FHE during his or her2 examinations. This includes a discussion on elements such as the skill, confidence and competence of an expert, as well as the potential bias effects he might encounter. A better understanding of elements surrounding handwriting examinations, to, in turn, better communicate results and conclusions to an audience, is also undertaken. Chapter 6 reviews the judicial acceptance of signature analysis in Courts and closes the state of the art section of this thesis. This chapter brings forward the current issues pertaining to the appreciation of this expertise by the non- forensic community, and will discuss the increasing number of claims of the unscientific nature of signature authentication. The necessity to aim for more scientific, comprehensive and transparent authentication methods will be discussed. The theoretical part of this thesis is concluded by a series of general recommendations for forensic handwriting examiners in forensic science, specifically for the expertise of signatures on paintings. These recommendations stem from the exhaustive review of the literature and the issues exposed from this review and can also be applied to the traditional examination of signatures (on paper). Part II - Experimental part Chapter 7 describes and defines the sampling, extraction and analysis phases of the research. The sampling stage of artists' signatures and their respective simulations are presented, followed by the steps that were undertaken to extract and determine sets of characteristics, specific to each artist, that describe their signatures. The method is based on a study of five artists and a group of individuals acting as forgers for the sake of this study. Finally, the analysis procedure of these characteristics to assess of the strength of evidence, and based on a Bayesian reasoning process, is presented. Chapter 8 outlines the results concerning both the artist and simulation corpuses after their optical observation, followed by the results of the analysis phase of the research. The feature selection process and the likelihood ratio evaluation are the main themes that are addressed. The discrimination power between both corpuses is illustrated through multivariate analysis. Part III - Discussion Chapter 9 discusses the materials, the methods, and the obtained results of the research. The opportunities, but also constraints and limits, of the developed method are exposed. Future works that can be carried out subsequent to the results of the study are also presented. Chapter 10, the last chapter of this thesis, proposes a strategy to incorporate the model developed in the last chapters into the traditional signature expertise procedures. Thus, the strength of this expertise is discussed in conjunction with the traditional conclusions reached by forensic handwriting examiners in forensic science. Finally, this chapter summarizes and advocates a list of formal recommendations for good practices for handwriting examiners. In conclusion, the research highlights the interdisciplinary aspect of signature examination of signatures on paintings. The current state of knowledge of the judicial quality of art experts, along with the scientific and historical analysis of paintings and signatures, are overviewed to give the reader a feel of the different factors that have an impact on this particular subject. The temperamental acceptance of forensic signature analysis in court, also presented in the state of the art, explicitly demonstrates the necessity of a better recognition of signature expertise by courts of law. This general acceptance, however, can only be achieved by producing high quality results through a well-defined examination process. This research offers an original approach to attribute a painted signature to a certain artist: for the first time, a probabilistic model used to measure the discriminative potential between authentic and simulated painted signatures is studied. The opportunities and limits that lie within this method of scientifically establishing the authorship of signatures on works of art are thus presented. In addition, the second key contribution of this work proposes a procedure to combine the developed method into that used traditionally signature experts in forensic science. Such an implementation into the holistic traditional signature examination casework is a large step providing the forensic, judicial and art communities with a solid-based reasoning framework for the examination of signatures on paintings. The framework and preliminary results associated with this research have been published (Montani, 2009a) and presented at international forensic science conferences (Montani, 2009b; Montani, 2012).
Resumo:
The objective of this work was to combine the advantages of the dried blood spot (DBS) sampling process with the highly sensitive and selective negative-ion chemical ionization tandem mass spectrometry (NICI-MS-MS) to analyze for recent antidepressants including fluoxetine, norfluoxetine, reboxetine, and paroxetine from micro whole blood samples (i.e., 10 microL). Before analysis, DBS samples were punched out, and antidepressants were simultaneously extracted and derivatized in a single step by use of pentafluoropropionic acid anhydride and 0.02% triethylamine in butyl chloride for 30 min at 60 degrees C under ultrasonication. Derivatives were then separated on a gas chromatograph coupled with a triple-quadrupole mass spectrometer operating in negative selected reaction monitoring mode for a total run time of 5 min. To establish the validity of the method, trueness, precision, and selectivity were determined on the basis of the guidelines of the "Société Française des Sciences et des Techniques Pharmaceutiques" (SFSTP). The assay was found to be linear in the concentration ranges 1 to 500 ng mL(-1) for fluoxetine and norfluoxetine and 20 to 500 ng mL(-1) for reboxetine and paroxetine. Despite the small sampling volume, the limit of detection was estimated at 20 pg mL(-1) for all the analytes. The stability of DBS was also evaluated at -20 degrees C, 4 degrees C, 25 degrees C, and 40 degrees C for up to 30 days. Furthermore, the method was successfully applied to a pharmacokinetic investigation performed on a healthy volunteer after oral administration of a single 40-mg dose of fluoxetine. Thus, this validated DBS method combines an extractive-derivative single step with a fast and sensitive GC-NICI-MS-MS technique. Using microliter blood samples, this procedure offers a patient-friendly tool in many biomedical fields such as checking treatment adherence, therapeutic drug monitoring, toxicological analyses, or pharmacokinetic studies.
Resumo:
This paper deals with a phenomenologically motivated magneto-viscoelastic coupled finite strain framework for simulating the curing process of polymers under the application of a coupled magneto-mechanical road. Magneto-sensitive polymers are prepared by mixing micron-sized ferromagnetic particles in uncured polymers. Application of a magnetic field during the curing process causes the particles to align and form chain-like structures lending an overall anisotropy to the material. The polymer curing is a viscoelastic complex process where a transformation from fluid. to solid occurs in the course of time. During curing, volume shrinkage also occurs due to the packing of polymer chains by chemical reactions. Such reactions impart a continuous change of magneto-mechanical properties that can be modelled by an appropriate constitutive relation where the temporal evolution of material parameters is considered. To model the shrinkage during curing, a magnetic-induction-dependent approach is proposed which is based on a multiplicative decomposition of the deformation gradient into a mechanical and a magnetic-induction-dependent volume shrinkage part. The proposed model obeys the relevant laws of thermodynamics. Numerical examples, based on a generalised Mooney-Rivlin energy function, are presented to demonstrate the model capacity in the case of a magneto-viscoelastically coupled load.