207 resultados para Impost Substitution
Resumo:
The epithelial sodium channel (ENaC) regulates the sodium reabsorption in the collecting duct principal cells of the nephron. ENaC is mainly regulated by hormones such as aldosterone and vasopressin, but also by serine proteases, Na+ and divalent cations. The crystallization of an ENaC/Deg member, the Acid Sensing Ion Channel, has been recently published but the pore-lining residues constitution of ENaC internal pore remains unclear. It has been reported that mutation aS589C of the selectivity filter on the aENaC subunit, a three residues G/SxS sequence, renders the channel permeant to divalent cations and sensitive to extracellular Cd2+. We have shown in the first part of my work that the side chain of aSer589 residue is not pointing toward the pore lumen, permitting the Cd2+ to permeate through the ion pore and to coordinate with a native cysteine, gCys546, located in the second transmembrane domain of the gENaC subunit. In a second part, we were interested in the sulfhydryl-reagent intracellular inhibition of ENaC-mediated Na+ current. Kellenberger et al. have shown that ENaC is rapidly and reversibly inhibited by internal sulfhydryl reagents underlying the involvement of intracellular cysteines in the internal regulation of ENaC. We set up a new approach comprising a Substituted Cysteine Analysis Method (SCAM) using intracellular MTSEA-biotin perfusion coupled to functional and biochemical assays. We were thus able to correlate the cysteine-modification of ENaC by methanethiosulfonate (MTS) and its effect on sodium current. This allowed us to determine the amino acids that are accessible to intracellular MTS and the one important for the inhibition of the channel. RESUME : Le canal épithélial sodique ENaC est responsable de la réabsorption du sodium dans les cellules principales du tubule collecteur rénal. Ce canal est essentiellement régulé par voie hormonale via l'aldostérone et la vasopressine mais également par des sérines protéases, le Na+ lui-même et certains cations divalents. La cristallisation du canal sodique sensible au pH acide, ASIC, un autre membre de la famille ENaC/Deg, a été publiée mais les acides aminés constituant le pore interne d'ENaC restent indéterminés. Il a été montré que la mutation aS589C du filtre de sélectivité de la sous-unité aENaC permet le passage de cations divalents et l'inhibition du canal par le Cd2+ extracellulaire. Dans un premier temps, nous avons montré que la chaîne latérale de la aSer589 n'est pas orientée vers l'intérieur du pore, permettant au Cd2+ de traverser le canal et d'interagir avec une cysteine native du second domaine transrnembranaire de la sous-unité γENaC, γCys546. Dans un second temps, nous nous sommes intéressés au mécanisme d'inhibition d'ENaC par les réactifs sulfhydryl internes. Kellenberger et al. ont montré l'implication de cystéines intracellulaires dans la régulation interne d'ENaC par les réactifs sulfhydryl. Nous avons mis en place une nouvelle approche couplant la méthode d'analyse par substitution de cystéines (SCAM) avec des perfusions intracellulaires de MTSEAbiotine. Ainsi, nous pouvons meure en corrélation les modifications des cystéines d'ENaC par les réactifs methanethiosulfonates (MTS) avec leur effet sur le courant sodique, et donc mettre en évidence les acides aminés accessibles aux MTS intracellulaires et ceux qui sont importants dans la fonction du canal.
Resumo:
BACKGROUND: CD44 represents a heterogeneous group of surface glycoproteins involved in cell-cell and cell-matrix interactions. CD44H is the major receptor for hyaluronate, and most if not all CD44H known functions are attributed to its ability to recognize hyaluronate. We have previously demonstrated a lack of CD44 expression in high stages and NMYC-amplified tumors and further have shown that NMYC-amplified cell lines either did not express CD44 at all or expressed a nonfunctional receptor. On the other hand, nonamplified cells constitutively expressed an active receptor, suggesting that absence of CD44-mediated hy aluronate binding could be related to increased malignancy in human neuroblastoma. PROCEDURE: In the present study we have compared the glycosylated structure of CD44 expressed by NMYC amplified vs. nonamplified cell lines in relation to their adhesive properties for hyaluronate. These adhesive properties were measured after modifications of the carbohydrate structure with enzymes and inhibitors of N- or O-linked glycosylation. RESULTS AND CONCLUSIONS: Our results indicate that increased sialylation, defective N-linked glycosylation, and substitution of the CD44 glycoprotein with keratan sulfate glycosaminoglycan might include modifications observed on neuroblastoma cells that could account for the inability of the receptor to bind hyaluronate.
Resumo:
OBJECTIVES: The purpose of this study was the qualitative and quantitative assessment of the in vitro effect of HIV-1 protease (PR) mutation 82M on replication capacity and susceptibility to the eight clinically available PR inhibitors (PIs).¦METHODS: The 82M substitution was introduced by site-directed mutagenesis in wild-type subtype B and G strains, as well as reverted back to wild-type in a therapy-failing strain. The recombinant viruses were evaluated for their replication capacity and susceptibility to PIs.¦RESULTS: The single 82M mutation within a wild-type subtype B or G background did not result in drug resistance. However, the in vitro effect of single PR mutations on PI susceptibility is not always distinguishable from wild-type virus, and particular background mutations and polymorphisms are required to detect significant differences in the drug susceptibility profile. Consequently, reverting the 82M mutation back to wild-type (82I) in a subtype G isolate from a patient that failed therapy with multiple other PR mutations did result in significant increases in susceptibility towards indinavir and lopinavir and minor increases in susceptibility towards amprenavir and atazanavir. The presence of the 82M mutation also slightly decreased viral replication, whether it was in the genetic background of subtype B or subtype G.¦CONCLUSIONS: Our results suggest that 82M has an impact on PI susceptibility and that this effect is not due to a compensatory effect on the replication capacity. Because 82M is not observed as a polymorphism in any subtype, these observations support the inclusion of 82M in drug resistance interpretation systems and PI mutation lists.
Resumo:
P-selectin glycoprotein ligand-1 (PSGL-1) interacts with selectins to support leukocyte rolling along vascular wall. L- and P-selectin bind to N-terminal tyrosine sulfate residues and to core-2 O-glycans attached to Thr-57, whereas tyrosine sulfation is not required for E-selectin binding. PSGL-1 extracellular domain contains decameric repeats, which extend L- and P-selectin binding sites far above the plasma membrane. We hypothesized that decamers may play a role in regulating PSGL-1 interactions with selectins. Chinese hamster ovary cells expressing wild-type PSGL-1 or PSGL-1 molecules exhibiting deletion or substitution of decamers with the tandem repeats of platelet glycoprotein Ibalpha were compared in their ability to roll on selectins and to bind soluble L- or P-selectin. Deletion of decamers abrogated soluble L-selectin binding and cell rolling on L-selectin, whereas their substitution partially reversed these diminutions. P-selectin-dependent interactions with PSGL-1 were less affected by decamer deletion. Videomicroscopy analysis showed that decamers are required to stabilize L-selectin-dependent rolling. Importantly, adhesion assays performed on recombinant decamers demonstrated that they directly bind to E-selectin and promote slow rolling. Our results indicate that the role of decamers is to extend PSGL-1 N terminus far above the cell surface to support and stabilize leukocyte rolling on L- or P-selectin. In addition, they function as a cell adhesion receptor, which supports approximately 80% of E-selectin-dependent rolling.
Resumo:
The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC binding to the TCR. Our data support a model in which CD8 promotes the binding of TCR to pMHC. However, once the pMHC/TCR complex is formed, the TCR dominates the pMHC/TCR dissociation rates. As a consequence of these molecular interactions, under physiologic conditions CD8 plays a key role in complex formation, resulting in the enhancement of CD8 T cell functions whose specificity, however, is determined by the TCR.
Resumo:
Acute kidney injury is common in critical illness and associated with important morbidity and mortality. Continuous renal replacement therapy (CRRT) enables physicians to safely and efficiently control associated metabolic and fluid balance disorders. The insertion of a large central venous catheter is required, which can be associated with mechanical and infectious complications. CRRT requires anticoagulation, which currently relies on heparin in most cases although citrate could become a standard in a near future. The choice of the substitution fluid depends on the clinical situation. A dose of 25 ml/kg/h is currently recommended.
Resumo:
The methodology for generating a homology model of the T1 TCR-PbCS-K(d) class I major histocompatibility complex (MHC) class I complex is presented. The resulting model provides a qualitative explanation of the effect of over 50 different mutations in the region of the complementarity determining region (CDR) loops of the T cell receptor (TCR), the peptide and the MHC's alpha(1)/alpha(2) helices. The peptide is modified by an azido benzoic acid photoreactive group, which is part of the epitope recognized by the TCR. The construction of the model makes use of closely related homologs (the A6 TCR-Tax-HLA A2 complex, the 2C TCR, the 14.3.d TCR Vbeta chain, the 1934.4 TCR Valpha chain, and the H-2 K(b)-ovalbumine peptide), ab initio sampling of CDR loops conformations and experimental data to select from the set of possibilities. The model shows a complex arrangement of the CDR3alpha, CDR1beta, CDR2beta and CDR3beta loops that leads to the highly specific recognition of the photoreactive group. The protocol can be applied systematically to a series of related sequences, permitting the analysis at the structural level of the large TCR repertoire specific for a given peptide-MHC complex.
Resumo:
We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7, 1-16 (doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments.
Resumo:
Wave-shaped ribs were detected at prenatal ultrasound in a 20(+1) week female fetus. At birth, skeletal radiographs showed marked hypomineralization and suggested hypophosphatasia. However, elevated blood calcium and alkaline phosphatase excluded hypophosphatasia and raised the possibility of Jansen metaphyseal dysplasia. Molecular analysis of the PTH/PTHrP receptor gene (PTH1R) showed heterozygosity for a previously undescribed transversion variant (c.1373T>A), which predicts p.Ile458Lys. In vitro evaluation of wild type and mutant PTH/PTHrP receptors supported the pathogenic role of the p.Ile458Lys substitution, and confirmed the diagnosis of Jansen metaphyseal dysplasia. This disorder may present prenatally with wavy ribs and in the newborn with hypomineralization, and may therefore be confused with hypophosphatasia. The mottled metaphyseal lesions typically associated with this disease appear only in childhood.
Resumo:
The sequence profile method (Gribskov M, McLachlan AD, Eisenberg D, 1987, Proc Natl Acad Sci USA 84:4355-4358) is a powerful tool to detect distant relationships between amino acid sequences. A profile is a table of position-specific scores and gap penalties, providing a generalized description of a protein motif, which can be used for sequence alignments and database searches instead of an individual sequence. A sequence profile is derived from a multiple sequence alignment. We have found 2 ways to improve the sensitivity of sequence profiles: (1) Sequence weights: Usage of individual weights for each sequence avoids bias toward closely related sequences. These weights are automatically assigned based on the distance of the sequences using a published procedure (Sibbald PR, Argos P, 1990, J Mol Biol 216:813-818). (2) Amino acid substitution table: In addition to the alignment, the construction of a profile also needs an amino acid substitution table. We have found that in some cases a new table, the BLOSUM45 table (Henikoff S, Henikoff JG, 1992, Proc Natl Acad Sci USA 89:10915-10919), is more sensitive than the original Dayhoff table or the modified Dayhoff table used in the current implementation. Profiles derived by the improved method are more sensitive and selective in a number of cases where previous methods have failed to completely separate true members from false positives.
Resumo:
Deletion or substitution of the serine-rich N-terminal stretch of grass phytochrome A (phyA) has repeatedly been shown to yield a hyperactive photoreceptor when expressed under the control of a constitutive promoter in transgenic tobacco or Arabidopsis seedlings retaining their native phyA. These observations have lead to the proposal that the serine-rich region is involved in negative regulation of phyA signaling. To re-evaluate this conclusion in a more physiological context we produced transgenic Arabidopsis seedlings of the phyA-null background expressing Arabidopsis PHYA deleted in the sequence corresponding to amino acids 6-12, under the control of the native PHYA promoter. Compared to the transgenic seedlings expressing wild-type phyA, the seedlings bearing the mutated phyA showed normal responses to pulses of far-red (FR) light and impaired responses to continuous FR light. In yeast two-hybrid experiments, deleted phyA interacted normally with FHY1 and FHL, which are required for phyA accumulation in the nucleus. Immunoblot analysis showed reduced stability of deleted phyA under continuous red or FR light. The reduced physiological activity can therefore be accounted for by the enhanced destruction of the mutated phyA. These findings do not support the involvement of the serine-rich region in negative regulation but they are consistent with a recent report suggesting that phyA turnover is regulated by phosphorylation.
Resumo:
OBJECTIVES: We studied the influence of noninjecting and injecting drug use on mortality, dropout rate, and the course of antiretroviral therapy (ART), in the Swiss HIV Cohort Study (SHCS). METHODS: Cohort participants, registered prior to April 2007 and with at least one drug use questionnaire completed until May 2013, were categorized according to their self-reported drug use behaviour. The probabilities of death and dropout were separately analysed using multivariable competing risks proportional hazards regression models with mutual correction for the other endpoint. Furthermore, we describe the influence of drug use on the course of ART. RESULTS: A total of 6529 participants (including 31% women) were followed during 31 215 person-years; 5.1% participants died; 10.5% were lost to follow-up. Among persons with homosexual or heterosexual HIV transmission, noninjecting drug use was associated with higher all-cause mortality [subhazard rate (SHR) 1.73; 95% confidence interval (CI) 1.07-2.83], compared with no drug use. Also, mortality was increased among former injecting drug users (IDUs) who reported noninjecting drug use (SHR 2.34; 95% CI 1.49-3.69). Noninjecting drug use was associated with higher dropout rates. The mean proportion of time with suppressed viral replication was 82.2% in all participants, irrespective of ART status, and 91.2% in those on ART. Drug use lowered adherence, and increased rates of ART change and ART interruptions. Virological failure on ART was more frequent in participants who reported concomitant drug injections while on opiate substitution, and in current IDUs, but not among noninjecting drug users. CONCLUSIONS: Noninjecting drug use and injecting drug use are modifiable risks for death, and they lower retention in a cohort and complicate ART.
Resumo:
Bacteria are generally difficult specimens to prepare for conventional resin section electron microscopy and mycobacteria, with their thick and complex cell envelope layers being especially prone to artefacts. Here we made a systematic comparison of different methods for preparing Mycobacterium smegmatis for thin section electron microscopy analysis. These methods were: (1) conventional preparation by fixatives and epoxy resins at ambient temperature. (2) Tokuyasu cryo-section of chemically fixed bacteria. (3) rapid freezing followed by freeze substitution and embedding in epoxy resin at room temperature or (4) combined with Lowicryl HM20 embedding and ultraviolet (UV) polymerization at low temperature and (5) CEMOVIS, or cryo electron microscopy of vitreous sections. The best preservation of bacteria was obtained with the cryo electron microscopy of vitreous sections method, as expected, especially with respect to the preservation of the cell envelope and lipid bodies. By comparison with cryo electron microscopy of vitreous sections both the conventional and Tokuyasu methods produced different, undesirable artefacts. The two different types of freeze-substitution protocols showed variable preservation of the cell envelope but gave acceptable preservation of the cytoplasm, but not lipid bodies, and bacterial DNA. In conclusion although cryo electron microscopy of vitreous sections must be considered the 'gold standard' among sectioning methods for electron microscopy, because it avoids solvents and stains, the use of optimally prepared freeze substitution also offers some advantages for ultrastructural analysis of bacteria.
Resumo:
OBJECTIVE: The aim of the study was to search for mutations of SCNN1B and SCNN1G in an Italian family with apparently dominant autosomal transmission of a clinical phenotype consistent with Liddle's syndrome. METHODS: Genetic analysis was performed in the proband, his relatives, and 100 control subjects. To determine the functional role of the mutation identified in the proband, we expressed the mutant or wild-type epithelial sodium channel in Xenopus laevis oocytes. RESULTS: A novel point mutation, causing an expected substitution of a leucine residue for the second proline residue of the conserved PY motif (PPP x Y) of the beta subunit was identified in the proband. The functional expression of the mutant epithelial sodium channel in X. laevis oocytes showed a three-fold increase in the amiloride-sensitive current as compared with that of the wild-type channel. CONCLUSION: This newly identified mutation adds to other missense mutations of the PY motif of the beta subunit of the epithelial sodium channel, thus confirming its crucial role in the regulation of the epithelial sodium channel. To our knowledge, this is the first report of Liddle's syndrome in the Italian population, confirmed by genetic and functional analysis, with the identification of a gain-of-function mutation not previously reported.