253 resultados para Immune regulation
Resumo:
SUMMARY: EBBP is a poorly characterized member of the RBCC/TRIM family (RING finger B-box coiled-coilltripartite motif). It is ubiquitously expressed, but particularly high levels are found in keratinocytes. There is evidence that EBBP is involved in inflammatory processes, since it can interact with pro-interleukin-1 ß (prolL-1 ß) in human macrophages and keratinocytes, and its downregulation results in reduced secretion of IL-1 ß. IL-1ß activation and secretion requires the proteolytic cleavage of prolL-1ß by caspase-1, which in turn is actìvated by a protein complex called the inflammasome. As it has been demonstrated that EBBP can bind two different proteins of the inflammasome (NALP-1 and caspase 1), we assumed that EBBP plays a role in the regulation of inflammation and that the inflammasome, which has as yet only been described in ínflammatory cells, may also exist in keratinocytes. Indeed, I could show in my thesis that the inflammasome components are expressed in human keratinócytes at the RNA and protein level and also in vivo in human epidermis. After irradiation with a physiological dose of UVB, keratinocytes activated prolL-1ß and secreted prolL-1 a, IL-1 ß, prolL-18 and inflammasome proteins, although all these proteins lack a classical signal peptide. The secretion was dependent on caspase-1 activity, but not on de novo protein synthesis. Knock-down of NALP1 and -3, caspase-1 and -5, EBBP and Asc strongly reduced the secretion of IL-1 ß, demonstrating that also in keratinocytes inflammasome proteins are directly involved in maturation of this cytokine. These results demonstrate for the first time the presence of an active inflammasome in non-professional immune cells. Moreover, they show that UV irradiation is a stimulus for inflammasome activation in keratinocytes. For the analysis of the ín vivo functions of EBBP, transgenic mice overexpressing EBBP in the epidermis were generated. To examine the influence of EBBP overexpression on inflammatory processes, we subjected the mice to different challenges, which induce inflammation. Wound-healing, UVB irradiation and delayed hypersensitivity were tested, but we did not observe any phenotype in the K14-EBBP mice. Besides, a conditional ebbp knockout mouse has been obtained, which will allow to determine the effects of EBBP gene deletion in different tissues and organs. RESUME: EBBP est un membre encore mal connu de la famille des RBCC/TRIM (RING finger B-box coiled-coil/tripartite motif). Il est exprimé de manière ubiquitaire, et en particulier dans les kératinocytes. EBBP étant capable d'interagir avec la prointerleukine-1 ß (prolL-1 ß) dans les macrophages et les kératinocytes humains et de réguler la sécrétion de l'IL-1 ß, il est très probable que cette protéine est impliquée dans l'inflammation. L'activation et la sécrétion de l'IL-1 ß requièrent le clivage protéolytique de son précurseur prolL-1ß par la caspase-1, qui est elle-même activée par un complexe protéique appelé l'inflammasome. Comme il a été démontré qu'EBBP peut lier deux protéines de l'inflammasome (NALP-1 et caspase-1), nous avons émis l'hypothèse qu'EBBP joue un rôle dans la régulation de l'inflammation et que l'inflammasome, jusqu'ici décrit exclusivement dans des cellules inflammatoires, existe dans les kératinocytes. En effet, j'ai pu montrer dans ma thèse que les composants de l'inflammasome sont exprimés dans les kératinocytes humains ainsi que in vivo dans l'épiderme humain. Après irradiation avec une dose, physiologique d'UVB, les kératinocytes activent la prolL-1 ß et sécrètent la prolL-1a, l'IL-1 ß, la prolL-18 et des protéines de l'inflammasome, bien que toutes ces protéines soient dépourvues de peptide signal. La sécrétion dépend de la caspase-1 mais pas de la synthèse protéique de novo. Le knock-down de NALP-1 et -3, des caspase-1 et -5, d'EBBP et d'Asc réduit de manière marquée la sécrétion d'IL-1 ß, démontrant que dans les kératinocytes également, les protéines de l'inflammasome sont impliquées directement dans la maturation de cette cytokine. Ces résultats démontrent pour la première fois la présence d'un inflammasome actif dans des cellules immunitaires non professionnelles. De plus, ils montrent que l'irradiation aux UV est un stimulus pour l'activation de l'inflammasome dans les kératinocytes. Pour l'analyse des fonctions d'EBBP in vivo, nous avons généré des souris transgéniques qui surexpriment EBBP dans l'épiderme. En vue d'examiner l'influence de la surexpression d'EBBP sur le processus inflammatoire, nous avons soumis ces souris à differents modèles d'inflammation. Nous avons testé cicatrisation, UVB et hypersensibilité retardée, mais n'avons pas observé de phénotype chez les souris transgéniques. En parallèle, nous avons également généré des souris knock-out pour ebbp qui devraient nous permettre de déterminer les effets de la suppression d'EBBP dans différents tissus et organes.
Resumo:
Sepsis is among the leading causes of death worldwide and its incidence is increasing. Defined as the host response to infection, sepsis is a clinical syndrome considered to be the expression of a dysregulated immune reaction induced by danger signals that may lead to organ failure and death. Remarkable progresses have been made in our understanding of the molecular basis of host defenses in recent years. The host defense response is initiated by innate immune sensors of danger signals designated under the collective name of pattern-recognition receptors. Members of the family of microbial sensors include the complement system, the Toll-like receptors, the nucleotide-binding oligomerization domainlike receptors, the RIG-I-like helicases and the C-type lectin receptors. Ligand-activated pattern-recognition receptors kick off a cascade of intracellular events resulting in the expression of co-stimulatory molecules and release of effector molecules playing a fundamental role in the initiation of the innate and adaptive immune responses. Fine tuning of proinflammatory and anti-inflammatory reactions is critical for keeping the innate immune response in check. Overwhelming or dysregulated responses induced by infectious stimuli may have dramatic consequences for the host as shown by the profound derangements observed in sepsis. Unfortunately, translational research approaches aimed at the development of therapies targeting newly identified innate immune pathways have not held their promises. Indeed, all recent clinical investigations of adjunctive anti-sepsis treatments had little, if any, impact on morbidity and all-cause mortality of sepsis. Dissecting the mechanisms underlying the transition from infection to sepsis is essential for solving the sepsis enigma. Important components of the puzzle have already been identified, but the hunt must go on in the laboratory and at the bedside.
Resumo:
Abstract : The term "muscle disuse" is often used to refer collectively to reductions in neuromuscular activity as observed with sedentary lifestyles, reduced weight bearing, cancer, chronic obstructive pulmonary disease, chronic heart failure, spinal cord injury, sarcopenia or exposure to microgravity (spaceflight). Muscle disuse atrophy, caused by accelerated proteolysis, is predominantly due to the activation of the ATP-dependent ubiquitin (Ub) proteasome pathway. The current advances in understanding the molecular factors contributing to the Ub-dependent proteolysis process have been made mostly in rodent models of human disease and denervation with few investigations performed directly in humans. Recently, in mice, the genes Atrogin-1 and MuRF1 have been designated as primary candidates in the control of muscle atrophy. Additionally, the decreased activity of the Akt/GSK-3ß and Akt/mTOR pathways has been associated with a reduction in protein synthesis and contributing to skeletal muscle atrophy. Therefore, it is now commonly accepted that skeletal muscle atrophy is the result of a decreased protein synthesis concomitant with an increase in protein degradation (Glass 2003). Atrogin-1 and MuRF1 are genes expressed exclusively in muscle. In mice, their expression has been shown to be directly correlated with the severity of atrophy. KO-mice experiments showed a major protection against atrophy when either of these genes were deleted. Skeletal muscle hypertrophy is an important function in normal postnatal development and in the adaptive response to exercise. It has been shown, in vitro, that the activation of phosphatidylinositol 3-kinase (PI-3K), by insulin growth factor 1 (IGF-1), stimulates myotubes hypertrophy by activating the downstream pathways, Akt/GSK-3ß and Akt/mTOR. It has also been demonstrated in mice, in vivo, that activation of these signalling pathways causes muscle hypertrophy. Moreover, the latter were recently proposed to also reduce muscle atrophy by inhibiting the FKHR mediated transcription of several muscle atrophy genes; Atrogin-1 and MuRF1. Therefore, these targets present new avenues for developing further the understanding of the molecular mechanisms involved in both skeletal muscle atrophy and hypertrophy. The present study proposed to investigate the regulation of the Akt/GSK-3ß and Akt/mTOR signalling pathways, as well as the expression levels of the "atrogenes", Atrogin-1 and MuRF1, in four human models of skeletal muscle atrophy. In the first study, we measured the regulation of the Akt signalling pathway after 8 weeks of both hypertrophy stimulating resistance training and atrophy stimulation de-training. As expected following resistance training, muscle hypertrophy and an increase in the phosphorylation status of the different members of the Akt pathway was observed. This was paralleled by a concomitant decrease in FOXO1 nuclear protein content. Surprisingly, exercise training also induced an increase in the, expression of the atrophy genes and proteins involved in the ATP-dependant ubiquitin-proteasome system. On the opposite, following the de-training period a muscle atrophy, relative to the post-training muscle size, was measured. At the same time, the phosphorylation levels of Akt and GSK-3ß were reduced while the amount of FOXO1 in the nucleus increased. After the atrophy phase, there was also a reduction in Atrogin-1 and MuRF1 contents. In this study, we demonstrate for the first time in healthy human skeletal muscle, that the regulation of Akt and its downstream targets GSK-3ß, mTOR and FOXO1 are associated with both thé skeletal muscle hypertrophy and atrophy processes. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of both upper and lower motor neurons, which leads to severe muscle weakness and atrophy. All measurements were performed in biopsies from 22 ALS patients and 16 healthy controls. ALS patients displayed an increase in Atrogin-1 mRNA and protein content which was associated with a decrease in Akt activity. However there was no difference in the mRNA and phospho-protein content of FOXO1, FOXO3a, p70S6K and GSK-3ß. The transcriptional regulation of human Atrogin-1 may be controlled by an Akt-mediated transcription factor other than FKHR or via an other signalling pathway. Chronic complete spinal cord injury (SCI) is associated with severe muscle atrophy which is linked to co-morbidity factors such as diabetes, obesity, lipid disorders and cardiovascular diseases. Molecular mechanisms associated with chronic complete SCI-related muscle atrophy are not well understood. The aim of the present study was to determine if there was an increase in catabolic signalling targets such as Atrogin-1, MuRF1, FOXO and myostatin, and decreases in anabolic signalling targets such as IGF, Akt, GSK-3ß, mTOR, 4E-BP1 and p-70S6K in chronic complete SCI patients. All measurements were performed in biopsies taken from 8 complete chronic SCI patients and 7 age matched healthy controls. In SCI patients when compared with controls, there was a significant reduction in mRNA levels of Atrogin1, MuRF1 and Myostatin. Protein levels for Atrogin-1, FOX01 and FOX03a were also reduced. IGF-1 and both phosphorylated GSK-3ß and 4E-BP1 were decreased; the latter two in an Akt and mTOR independent manner, respectively. Reductions in Atrogin-1, MuRF1, FOXO and myostatin suggest the existence of an internal mechanism aimed at reducing further loss of muscle proteins during chronic SCI. The downregulation of signalling proteins regulating anabolism such as IGF, GSK3ß and 4E-BP1 would reduce the ability to increase protein synthesis rates in this chronic state of muscle wasting. The molecular mechanisms controlling age-related skeletal muscle loss in humans are poorly understood. The present study aimed to investigate the regulation of several genes and proteins involved in the activation of key signalling pathways promoting muscle hypertrophy such as GH/STAT5/IGF, IGF/Akt/GSK-3ß/4E-BP1 and muscle atrophy such as TNFα/SOCS3 and Akt/FOXO/Atrogin-1 or MuRF1 in muscle biopsies from 13 young and 16 elderly men. In the older, as compared with the young subjects, TNFα and SOCS-3 were increased while growth hormone receptor protein (GHR) and IGF-1 mRNA were both decreased. Akt protein levels were increased however no change in phosphorylated Akt content was observed. GSK-3ß phosphorylation levels were increased while 4E-BP1 was not changed. Nuclear FKHR and FKHRL1 protein levels were decreased, with no changes in their atrophy target genes, Atrogin-1 and MuRF1. Myostatin mRNA and protein levels were significantly elevated. Human sarcopenia may be linked to a reduction in the activity or sensitivity of anabolic signalling proteins such as GHR, IGF and Akt. TNFα, SOCS-3 and myostatin are potential candidates influencing this anabolic perturbation. In conclusion our results support those obtained in rodent or ín vitro models, and demonstrate Akt plays a pivotal role in the control of muscle mass in humans. However, the Akt phosphorylation status was dependant upon the model of muscle atrophy as Akt phosphorylation was reduced in all atrophy models except for SCI. Additionally, the activity pattern of the downstream targets of Akt appears to be different upon the various human models. It seems that under particular conditions such as spinal cord injury or sarcopenia, .the regulation of GSK-3ß, 4eBP1 and p70S6K might be independent of Akt suggesting alternative signalling pathways in the control of these the anabolic response in human skeletal muscle. The regulation of Atrogin-1 and MuRF1 in some of our studies has been shown to be also independent of the well-described Akt/FOXO signalling pathway suggesting that other transcription factors may regulate human Atrogin-1 and MuRF1. These four different models of skeletal muscle atrophy and hypertrophy have brought a better understanding concerning the molecular mechanisms controlling skeletal muscle mass in humans.
Resumo:
ABSTRACT : The epidermis, the outermost compartment of the skin, is a stratified and squamous epithelium that constantly self-renews. Keratinocytes, which represent the main epidermal population, are responsible for its cohesion and barrier function. Epidermal renewal necessitates a fine equilibrium between keratinocyte proliferation and differentiation. The keratinocyte stem cell, located in the basal cell layer, is responsible for epidermal homeostasis and regeneration during the wound healing process. The transcription factor p63 structurally belongs to the p53 superfamily. It is expressed in the basal and supra-basal cell layers of stratified epithelia and is thought to be important for the renewal or the differentiation of keratinocyte stem cells (Yang et al., 1999; Mills et al., 1999). In order to better understand its function, we established an in vitro model of p63 deficient human keratinocyte stem cells using a shp63 mediated RNA interference. Knockdown of endogenous p63 induces downregulation of cell-adhesion genes as previously described (Carroll et al., 2006). Interestingly, the replating of attached p63-knockdown keratinocytes on a feeder layer results in a loss of attachment and proliferation. They are no longer clonogenic. However, if the same population are replated in a fibrin matrix, extended fibrinolysis is reported, a common process in wound healing, suggesting that p63 regulates the fibrinolytic pathway. This result was confirmed by Q-PCR and shows that the urokinase pathway, which mediates fibrinolysis, is upregulated. Altogether, these findings suggest a mechanism in which the fine tuning of p63 expression promotes attachment or release of the keratinocyte stem cell from the basement membrane by inducing genes of adhesion and/or of fibrinolysis. This mechanism may be important for epidermal self-renewal, differentiation as well as wound healing. Its misregulation may be partly responsible for the p63 knockout phenotype. The downregulation of p63 also induces a decrease in LEKTI expression. LEKTI (lymphoepithelial Kazal-type serine protease inhibitor) is a serine protease inhibitor encoded by the Spink5 gene. It is expressed and secreted in the uppermost differentiated layers of stratified epithelia and plays a role in the desquamation process. When this gene is disrupted, humans develop the Netherton syndrome (Chavanas et al., 2000b). It is a dermatosis characterized by hair dysplasias, ichtyosiform erythroderma and impairment in epidermal barrier function promoting inflammation similarly as in psoriasis with inflammatory infiltrate in excess. TNFα (tumor necrosis factor alpha) and EDA1 (ectodysplasin A1) are two transmembraneprecursors that belong to the TNF superfamily, which is involved in immune and inflammation regulation (Smahi et al., 2002). We suggest that the secreted serine protease inhibitor LEKTI plays a role in the regulation of TNFα and EDA1 precursor cleavage and absence of LEKTI induces excess of inflammation. To investigate this hypothesis, we induced downregulation of Spink5 expression in rat keratinocyte stem cells by using a shSpink5 mediated RNA interference approach. Interestingly, expression of TNFα and EDA1 is modified after knockdown of Spink5 by Q-PCR. Moreover, downregulation of Spink5 induces loss of cohesiveness between keratinocytes and colonies adopt a scattered phenotype. Altogether, these preliminary data suggest that downregulation of LEKTI may play a role in the inflammatory response in Netherton syndrome patients, by regulating TNFα expression.
Resumo:
The positive transcription elongation factor (P-TEFb) consists of CDK9, a cyclin-dependent kinase and its cyclin T partner. It is required for transcription of most class II genes. Its activity is regulated by non-coding RNAs. The 7SK cellular RNA turns the HEXIM cellular protein into a P-TEFb inhibitor that binds its cyclin T subunit. Thus, P-TEFb activity responds to variations in global cellular transcriptional activity and to physiological conditions linked to cell differentiation, proliferation or cardiac hypertrophy. In contrast, the Tat activation region RNA plays an activating role. This feature at the 5' end of the human immunodeficiency (HIV) viral transcript associates with the viral protein Tat that in turn binds cyclin T1 and recruits active P-TEFb to the HIV promoter. This results in enhanced P-TEFb activity, which is critical for an efficient production of viral transcripts. Although discovered recently, the regulation of P-TEFb becomes a paradigm for non-coding RNAs that regulate transcription factors. It is also a unique example of RNA-driven regulation of a cyclindependent kinase.
Resumo:
Viral infections can be a major thread for the central nervous system (CNS), therefore, the immune system must be able to mount a highly proportionate immune response, not too weak, which would allow the virus to proliferate, but not too strong either, to avoid collateral damages. Here, we aim at reviewing the immunological mechanisms involved in the host defense in viral CNS infections. First, we review the specificities of the innate as well as the adaptive immune responses in the CNS, using several examples of various viral encephalitis. Then, we focus on three different modes of interactions between viruses and immune responses, namely human Herpes virus-1 encephalitis with the defect in innate immune response which favors this disease; JC virus-caused progressive multifocal leukoencephalopathy and the crucial role of adaptive immune response in this example; and finally, HIV infection with the accompanying low grade chronic inflammation in the CNS in some patients, which may be an explanation for the presence of cognitive disorders, even in some well-treated HIV-infected patients. We also emphasize that, although the immune response is generally associated with viral replication control and limited cellular death, an exaggerated inflammatory reaction can lead to tissue damage and can be detrimental for the host, a feature of the immune reconstitution inflammatory syndrome (IRIS). We will briefly address the indication of steroids in this situation.
Resumo:
CONTEXT: The high diagnostic performance of plasma-free metanephrines (metanephrine and normetanephrine) (MN) for pheochromocytoma (PHEO) results from the tumoral expression of catechol-O-methyltransferase (COMT), the enzyme involved in O-methylation of catecholamines (CAT). Intriguingly, metanephrine, in contrast to epinephrine, is not remarkably secreted during a stress in hypertensive or normotensive subjects, whereas in PHEO patients CAT and MN are both raised to high levels. Because epinephrine and metanephrine are almost exclusively produced by the adrenal medulla, this suggests distinct CAT metabolism in chromaffin cells and pheochromocytes. OBJECTIVE: The objective of the study was to compare CAT metabolism between adrenal medulla and PHEO tissue regarding related enzyme expression including monoamine oxidases (MAO) and COMT. DESIGN: A multicenter comparative study was conducted. STUDY PARTICIPANTS: The study included 21 patients with a histologically confirmed PHEO and eight adrenal glands as control. MAIN OUTCOME MEASURES: CAT, dihydroxyphenol-glycol, 3,4-dihydroxyphenylacetic acid, and MN were measured in adrenal medulla and PHEO tissue. Western blot, quantitative RT-PCR and immunofluorescence studies for MAOA, MAOB, tyrosine hydroxylase, dopamine β-hydroxylase, L-amino acid decarboxylase, and COMT were applied on tissue homogenates and cell preparations. RESULTS: At both the protein and mRNA levels, MAOA and COMT are detected less often in PHEO compared with adrenal medulla, conversely to tyrosine hydroxylase, L-amino acid decarboxylase, and dopamine β-hydroxylase, much more expressed in tumor tissue. MAOB protein is detected less often in tumor but not differently expressed at the mRNA level. Dihydroxyphenol-glycol is virtually absent from tumor, whereas MN, produced by COMT, rises to 4.6-fold compared with adrenal medulla tissue. MAOA down-regulation was observed in 100% of tumors studied, irrespectively of genetic alteration identified; on the other hand, MAOA was strongly expressed in all adrenal medulla collected independently of age, gender, or late sympathetic activation of the deceased donor. CONCLUSION: High concentrations of MN in tumor do not only arise from CAT overproduction but also from low MAOA expression, resulting in higher substrate availability for COMT.
Resumo:
The lateral hypothalamic area is considered the classic 'feeding centre', regulating food intake, arousal and motivated behaviour through the actions of orexin and melanin-concentrating hormone (MCH). These neuropeptides are inhibited in response to feeding-related signals and are released during fasting. However, the molecular mechanisms that regulate and integrate these signals remain poorly understood. Here we show that the forkhead box transcription factor Foxa2, a downstream target of insulin signalling, regulates the expression of orexin and MCH. During fasting, Foxa2 binds to MCH and orexin promoters and stimulates their expression. In fed and in hyperinsulinemic obese mice, insulin signalling leads to nuclear exclusion of Foxa2 and reduced expression of MCH and orexin. Constitutive activation of Foxa2 in the brain (Nes-Cre/+;Foxa2T156A(flox/flox) genotype) results in increased neuronal MCH and orexin expression and increased food consumption, metabolism and insulin sensitivity. Spontaneous physical activity of these animals in the fed state is significantly increased and is similar to that in fasted mice. Conditional activation of Foxa2 through the T156A mutation expression in the brain of obese mice also resulted in improved glucose homeostasis, decreased fat and increased lean body mass. Our results demonstrate that Foxa2 can act as a metabolic sensor in neurons of the lateral hypothalamic area to integrate metabolic signals, adaptive behaviour and physiological responses.
Resumo:
Monocytes serve as a central defense system against infection and injury but can also promote pathological inflammatory responses. Considering the evidence that monocytes exist in at least two subsets committed to divergent functions, we investigated whether distinct factors regulate the balance between monocyte subset responses in vivo. We identified a microRNA (miRNA), miR-146a, which is differentially regulated both in mouse (Ly-6C(hi)/Ly-6C(lo)) and human (CD14(hi)/CD14(lo)CD16(+)) monocyte subsets. The single miRNA controlled the amplitude of the Ly-6C(hi) monocyte response during inflammatory challenge whereas it did not affect Ly-6C(lo) cells. miR-146a-mediated regulation was cell-intrinsic and depended on Relb, a member of the noncanonical NF-κB/Rel family, which we identified as a direct miR-146a target. These observations not only provide mechanistic insights into the molecular events that regulate responses mediated by committed monocyte precursor populations but also identify targets for manipulating Ly-6C(hi) monocyte responses while sparing Ly-6Clo monocyte activity.
Resumo:
Primary sensory neurons display various neuronal phenotypes which may be influenced by factors present in central or peripheral targets. In the case of DRG cells expressing substance P (SP), the influence of peripheral or central targets was tested on the neuronal expression of this neuropeptide. DRG cells were cultured from chick embryo at E6 or E10 (before or after establishment of functional connections with targets). Preprotachykinin mRNA was visualized in DRG cell cultures by either Northern blot or in situ hybridization using an antisense labeled riboprobe, while the neuropeptide SP was detected by immunostaining with a monoclonal antibody. In DRG cell cultures from E10, only 60% of neurons expressed SP. In contrast, DRG cell cultures performed at E6 showed a significant hybridization signal and SP-like immunoreactivity in virtually all the neurons (98%). The addition of extracts from muscle, skin, brain or spinal cord to DRG cells cultured at E6 reduced by 20% the percentage of neurons which express preprotachykinin mRNA and SP-like immunoreactivity. Our results indicate that factors issued from targets inhibit SP-expression by a subset of primary sensory neurons and act on the transcriptional control of preprotachykinin gene.
Resumo:
We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.