134 resultados para Imaging diagnostic agents
Resumo:
Alveolar haemorrhage (AH) is a rare and potentially life-threatening condition characterised by diffuse blood leakage from the pulmonary microcirculation into the alveolar spaces due to microvascular damage. It is not a single disease but a clinical syndrome that may have numerous causes. Autoimmune disorders account for fewer than half of cases, whereas the majority are due to nonimmune causes such as left heart disease, infections, drug toxicities, coagulopathies and malignancies. The clinical picture includes haemoptysis, diffuse alveolar opacities at imaging and anaemia. Bronchoalveolar lavage is the gold standard method for diagnosing AH. The lavage fluid appears macroscopically haemorrhagic and/or contains numerous haemosiderin-laden macrophages. The diagnostic work-up includes search for autoimmune disorders, review of drugs and exposures, assessment of coagulation and left heart function, and search for infectious agents. Renal biopsy is often indicated if AH is associated with renal involvement, whereas lung biopsy is only rarely useful. Therapy aims at correction of reversible factors and immunosuppressive therapy in autoimmune causes, with plasmapheresis in selected situations.
Resumo:
Pyogenic liver abscess is a severe condition and a therapeutic challenge. Treatment failure may be due to an unrecognized ingested foreign body that migrated from the gastrointestinal tract. There has recently been a marked increase in the number of reported cases of this condition, but initial misdiagnosis as cryptogenic liver abscess still occurs in the majority of cases. We conducted the current study to characterize this entity and provide a diagnostic strategy applicable worldwide. To this end, data were collected from our case and from a systematic review that identified 59 well-described cases. Another systematic review identified series of cryptogenic-and Asian Klebsiella-liver abscess; these data were pooled and compared with the data from the cases of migrated foreign body liver abscess. The review points out the low diagnostic accuracy of history taking, modern imaging, and even surgical exploration. A fistula found through imaging procedures or endoscopy warrants surgical exploration. Findings suggestive of foreign body migration are symptoms of gastrointestinal perforation, computed tomography demonstration of a thickened gastrointestinal wall in continuity with the abscess, and adhesions seen during surgery. Treatment failure, left lobe location, unique location (that is, only 1 abscess location within the liver), and absence of underlying conditions also point to the diagnosis, as shown by comparison with the cryptogenic liver abscess series. This study demonstrates that migrated foreign body liver abscess is a specific entity, increasingly reported. It usually is not cured when unrecognized, and diagnosis is mainly delayed. This study provides what we consider the best available evidence for timely diagnosis with worldwide applicability. Increased awareness is required to treat this underestimated condition effectively, and further studies are needed.
Resumo:
Use of radiolabeled nucleotides for tumor imaging is hampered by rapid in vivo degradation and low DNA-incorporation rates. We evaluated whether blocking of thymidine (dThd) synthesis by 5-fluoro-2'-deoxyuridine (FdUrd) could improve scintigraphy with radio-dThd analogues, such as 5-iodo-2'-deoxyuridine (IdUrd). We first show in vitro that coincubation with FdUrd substantially increased incorporation of [125I]IdUrd and [3H]dThd in the three tested human glioblastoma lines. Flow cytometry analysis showed that a short coincubation with FdUrd (1 h) produces a signal increase per labeled cell. We then measured biodistribution 24 h after i.v. injection of [125I]IdUrd in nude mice s.c. xenografted with the three glioblastoma lines. Compared with animals given [125I]IdUrd alone, i.v. preadministration for 1 h of 10 mg/kg FdUrd increased the uptake of [125I]IdUrd in the three tumors 4.8-6.8-fold. Compatible with previous reports, there were no side effects in mice observed for 2 months after receiving such a treatment. The tumor uptake of [125I]IdUrd was increased < or =13.6-fold when FdUrd preadministration was stepwise reduced to 1.1 mg/kg. Uptake increases remained lower (between 1.7- and 5.8-fold) in normal proliferating tissues (i.e., bone marrow, spleen, and intestine) and negligible in quiescent tissues. DNA extraction showed that 72-80% of radioactivity in tumor and intestine was bound to DNA. Scintigraphy of xenografted mice was performed at different times after i.v. injection of 3.7 MBq [125I]IdUrd. Tumor detection was significantly improved after FdUrd preadministration while still equivocal after 24 h in mice given [125I]IdUrd alone. Furthermore, background activity could be greatly reduced by p.o. administration of KClO4 in addition to potassium iodide. We conclude that FdUrd preadministration may improve positron or single photon emission tomography with cell division tracers, such as radio-IdUrd and possibly other dThd analogues.
Resumo:
The objective was to design a vascular phantom compatible with digital subtraction angiography, computerized tomography angiography, ultrasound and magnetic resonance angiography (MRA). Fiducial markers were implanted at precise known locations in the phantom to facilitate identification and orientation of plane views from three-dimensional (3-D) reconstructed images. A vascular conduit connected to tubing at the extremities of the phantom ran through an agar-based gel filling it. A vessel wall in latex was included around the conduit to avoid diffusion of contrast agents. Using a lost-material casting technique based on a low melting point metal, geometries of pathological vessels were modeled. During the experimental testing, fiducial markers were detectable in all modalities without distortion. No leak of gadolinium through the vascular wall was observed on MRA after 5 hours. Moreover, no significant deformation of the vascular conduit was noted during the fabrication process (confirmed by microtome slicing along the vessel). The potential use of the phantom for calibration, rescaling, and fusion of 3-D images obtained from the different modalities as well as its use for the evaluation of intra- and inter-modality comparative studies of imaging systems are discussed. In conclusion, the vascular phantom can allow accurate calibration of radiological imaging devices based on x-ray, magnetic resonance and ultrasound and quantitative comparisons of the geometric accuracy of the vessel lumen obtained with each of these methods on a given well defined 3-D geometry.
Resumo:
Iron deficiency is generally investigated when faced with anemia, or with symptoms that could be related to iron deficiency without anemia. This simple disorder is easy to treat, provided that the diagnosis is correct. Several biological tests are available, but their interpretation is oftentimes problematic. Pre-analytical factors can interfere with measurements, normal values can change depending on suppliers, and, above all, results from different markers can be contradictory in some clinical situations. The aim of this article is to evaluate how the evolution of scientific knowledge and clinical trials can contribute to a better understanding and greater reliability in the diagnosis of iron deficiency.
Resumo:
Invasive fungal diseases (IFDs) continue to cause considerable morbidity and mortality in patients with haematological malignancy. Diagnosis of IFD is difficult, with the sensitivity of the gold standard tests (culture and histopathology) often reported to be low, which may at least in part be due to sub-optimal sampling or subsequent handling in the routine microbiological laboratory. Therefore, a working group of the European Conference in Infections in Leukaemia was convened in 2009 with the task of reviewing the classical diagnostic procedures and providing recommendations for their optimal use. The recommendations were presented and approved at the ECIL-3 conference in September 2009. Although new serological and molecular tests are examined in separate papers, this review focuses on sample types, microscopy and culture procedures, antifungal susceptibility testing and imaging. The performance and limitations of these procedures are discussed and recommendations are provided on when and how to use them and how to interpret the results.
Resumo:
The aim of this study was to compare the diagnostic value of post-mortem computed tomography angiography (PMCTA) to conventional, ante-mortem computed tomography (CT)-scan, CT-angiography (CTA) and digital subtraction angiography (DSA) in the detection and localization of the source of bleeding in cases of acute hemorrhage with fatal outcomes. The medical records and imaging scans of nine individuals who underwent a conventional, ante-mortem CT-scan, CTA or DSA and later died in the hospital as a result of an acute hemorrhage were reviewed. Post-mortem computed tomography angiography, using multi-phase post-mortem CTA, as well as medico-legal autopsies were performed. Localization accuracy of the bleeding was assessed by comparing the diagnostic findings of the different techniques. The results revealed that data from ante-mortem and post-mortem radiological examinations were similar, though the PMCTA showed a higher sensitivity for detecting the hemorrhage source than did ante-mortem radiological investigations. By comparing the results of PMCTA and conventional autopsy, much higher sensitivity was noted in PMCTA in identifying the source of the bleeding. In fact, the vessels involved were identified in eight out of nine cases using PMCTA and only in three cases through conventional autopsy. Our study showed that PMCTA, similar to clinical radiological investigations, is able to precisely identify lesions of arterial and/or venous vessels and thus determine the source of bleeding in cases of acute hemorrhages with fatal outcomes.
Resumo:
Neuroimaging has expanded beyond its traditional diagnostic role and become a critical tool in the evaluation and management of stroke. The objectives of imaging include prompt accurate diagnosis, treatment triage, prognosis prediction, and secondary preventative precautions. While capitalizing on the latest treatment options and expanding upon the "time is brain" doctrine, the ultimate goal of imaging is to maximize the number of treated patients and improve the outcome of one the most costly and morbid disease. A broad overview of comprehensive multimodal stroke imaging is presented here to affirm its utilization.
Resumo:
Astrocytes can experience large intracellular Na+ changes following the activation of the Na+-coupled glutamate transport. The present study investigated whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Mitochondrial Na+ (Na+(mit)) changes were monitored using the Na+-sensitive fluorescent probe CoroNa Red (CR) in intact primary cortical astrocytes, as opposed to the classical isolated mitochondria preparation. The mitochondrial localization and Na+ sensitivity of the dye were first verified and indicated that it can be safely used as a selective Na+(mit) indicator. We found by simultaneously monitoring cytosolic and mitochondrial Na+ using sodium-binding benzofuran isophthalate and CR, respectively, that glutamate-evoked cytosolic Na+ elevations are transmitted to mitochondria. The resting Na+(mit) concentration was estimated at 19.0 +/- 0.8 mM, reaching 30.1 +/- 1.2 mM during 200 microM glutamate application. Blockers of conductances potentially mediating Na+ entry (calcium uniporter, monovalent cation conductances, K+(ATP) channels) were not able to prevent the Na+(mit) response to glutamate. However, Ca2+ and its exchange with Na+ appear to play an important role in mediating mitochondrial Na+ entry as chelating intracellular Ca2+ with BAPTA or inhibiting Na+/Ca2+ exchanger with CGP-37157 diminished the Na+(mit) response. Moreover, intracellular Ca2+ increase achieved by photoactivation of caged Ca2+ also induced a Na+(mit) elevation. Inhibition of mitochondrial Na/H antiporter using ethylisopropyl-amiloride caused a steady increase in Na+(mit) without increasing cytosolic Na+, indicating that Na+ extrusion from mitochondria is mediated by these exchangers. Thus, mitochondria in intact astrocytes are equipped to efficiently sense cellular Na+ signals and to dynamically regulate their Na+ content.
Resumo:
There is a mean delay of 5 to 8 years between the onset of symptoms and the diagnosis of ankylosing spondylitis. This is due to the fact that radiographic sacroiliitis is delayed. The purpose of an earlier diagnosis is emphasized by the need for better management, the new diagnostic method including magnetic resonance imaging and by the efficacy of anti-TNF therapy. The current criteria are classification but not diagnostic criteria. Their sensitivity is insufficient for an early diagnosis of ankylosing spondylitis. MRI criteria allow to differentiate inflammatory signs from degenerative signs in patients sent for aspecific low back pain. The aims of this article are to illustrate the different stages of the disease from early inflammatory involvement to ankylosis and to discuss the role of imaging in the management of affected patients.
Resumo:
MRI has evolved into an important diagnostic technique in medical imaging. However, reliability of the derived diagnosis can be degraded by artifacts, which challenge both radiologists and automatic computer-aided diagnosis. This work proposes a fully-automatic method for measuring image quality of three-dimensional (3D) structural MRI. Quality measures are derived by analyzing the air background of magnitude images and are capable of detecting image degradation from several sources, including bulk motion, residual magnetization from incomplete spoiling, blurring, and ghosting. The method has been validated on 749 3D T(1)-weighted 1.5T and 3T head scans acquired at 36 Alzheimer's Disease Neuroimaging Initiative (ADNI) study sites operating with various software and hardware combinations. Results are compared against qualitative grades assigned by the ADNI quality control center (taken as the reference standard). The derived quality indices are independent of the MRI system used and agree with the reference standard quality ratings with high sensitivity and specificity (>85%). The proposed procedures for quality assessment could be of great value for both research and routine clinical imaging. It could greatly improve workflow through its ability to rule out the need for a repeat scan while the patient is still in the magnet bore.
Resumo:
BACKGROUND: Stem cell labeling with iron oxide (ferumoxide) particles allows labeled cells to be detected by magnetic resonance imaging (MRI) and is commonly used to track stem cell engraftment. However, the validity of MRI for distinguishing surviving ferumoxide-labeled cells from other sources of MRI signal, for example, macrophages containing ferumoxides released from nonsurviving cells, has not been thoroughly investigated. We sought to determine the relationship between the persistence of iron-dependent MRI signals and cell survival 3 weeks after injection of syngeneic or xenogeneic ferumoxides-labeled stem cells (cardiac-derived stem cells) in rats. METHODS AND RESULTS: We studied nonimmunoprivileged human and rat cardiac-derived stem cells and human mesenchymal stem cells doubly labeled with ferumoxides and beta-galactosidase and injected intramyocardially into immunocompetent Wistar-Kyoto rats. Animals were imaged at 2 days and 3 weeks after stem cell injection in a clinical 3-T MRI scanner. At 2 days, injection sites of xenogeneic and syngeneic cells (cardiac-derived stem cells and mesenchymal stem cells) were identified by MRI as large intramyocardial signal voids that persisted at 3 weeks (50% to 90% of initial signal). Histology (at 3 weeks) revealed the presence of iron-containing macrophages at the injection site, identified by CD68 staining, but very few or no beta-galactosidase-positive stem cells in the animals transplanted with syngeneic or xenogeneic cells, respectively. CONCLUSIONS: The persistence of significant iron-dependent MRI signal derived from ferumoxide-containing macrophages despite few or no viable stem cells 3 weeks after transplantation indicates that MRI of ferumoxide-labeled cells does not reliably report long-term stem cell engraftment in the heart.