116 resultados para IMMEDIATE-EARLY GENE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 520 Wilson disease-causing mutations in the ATP7B gene have been described to date. In this study we report DNA and RNA analyses carried out for molecular characterization of a consensus sequence splicing mutation found in homozygosity in a Swiss Wilson disease patient. RNA analysis of 1946 +6 T→C in both the peripheral lymphoblasts and liver resulted in the production in the propositus of only an alternative transcript lacking exons 6, 7, and 8 resulting most likely in alterations of cell biochemistry and disease. The patient presents an early form of severe hepatic disease characterized by hepatosplenomegaly, reduced hepatic function, anemia and thrombocytopenia indicating that 1946 +6 T→C is a severe mutation. Since identical results were obtained from both peripheral lymphoblasts and liver they also suggest that RNA studies of illegitimate transcripts can be safely used for molecular characterization of ATP7B splicing mutations, thus improving genetic counseling and diagnosis of Wilson disease. Moreover these studies, contribute to reveal the exact molecular mechanisms producing Wilson disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial sodium channels (ENaC) are members of the degenerin/ENaC superfamily of non-voltage-gated, highly amiloride-sensitive cation channels that are composed of three subunits (alpha-, beta-, and gamma-ENaC). Since complete gene inactivation of the beta- and gamma-ENaC subunit genes (Scnn1b and Scnn1g) leads to early postnatal death, we generated conditional alleles and obtained mice harboring floxed and null alleles for both gene loci. Using quantitative RT-PCR analysis, we showed that the introduction of the loxP sites did not interfere with the mRNA transcript expression level of the Scnn1b and Scnn1g gene locus, respectively. Upon a regular and salt-deficient diet, both beta- and gamma-ENaC floxed mice showed no difference in their mRNA transcript expression levels, plasma electrolytes, and aldosterone concentrations as well as weight changes compared with control animals. These mice can now be utilized to dissect the role of ENaC function in classical and nonclassic target organs/tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of my PhD research was the concept of modularity. In the last 15 years, modularity has become a classic term in different fields of biology. On the conceptual level, a module is a set of interacting elements that remain mostly independent from the elements outside of the module. I used modular analysis techniques to study gene expression evolution in vertebrates. In particular, I identified ``natural'' modules of gene expression in mouse and human, and I showed that expression of organ-specific and system-specific genes tends to be conserved between such distance vertebrates as mammals and fishes. Also with a modular approach, I studied patterns of developmental constraints on transcriptome evolution. I showed that none of the two commonly accepted models of the evolution of embryonic development (``evo-devo'') are exclusively valid. In particular, I found that the conservation of the sequences of regulatory regions is highest during mid-development of zebrafish, and thus it supports the ``hourglass model''. In contrast, events of gene duplication and new gene introduction are most rare in early development, which supports the ``early conservation model''. In addition to the biological insights on transcriptome evolution, I have also discussed in detail the advantages of modular approaches in large-scale data analysis. Moreover, I re-analyzed several studies (published in high-ranking journals), and showed that their conclusions do not hold out under a detailed analysis. This demonstrates that complex analysis of high-throughput data requires a co-operation between biologists, bioinformaticians, and statisticians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaporin 4 (AQP4) is a water channel involved in water movements across the cell membrane and is spatially organized on the cell surface in orthogonal array particles (OAPs). Its role in edema formation or resolution after stroke onset has been studied mainly at late time points. We have shown recently that its expression is rapidly induced after ischemia coinciding in time with an early swelling of the ischemic hemisphere. There are two isoforms of AQP4: AQP4-M1 and AQP4-M23. The ratio of these isoforms influences the size of the OAPs but the functional impact is not known. The role of the early induction of AQP4 is not yet known. Thrombin preconditioning in mice provides a useful model to study endogenous protective mechanisms. Using this model, we provide evidence for the first time that the early induction of AQP4 may contribute to limit the formation of edema and that the AQP4-M1 isoform is predominantly induced in the ischemic tissue at this time point. Although it prevents edema formation, the early induction of the AQP4 expression does not prevent the blood-brain barrier disruption, suggesting an effect limited to the prevention of edema formation possibly by removing of water from the tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delayed recovery has been advocated to limit the postoperative stress linked to awakening from anesthesia, but data on this subject are lacking. In this study, we measured oxygen consumption (V(O2)) and plasma catecholamine concentrations as markers of postoperative stress. We tested the hypothesis that delayed recovery and extubation would attenuate metabolic changes after intracranial surgery. Thirty patients were included in a prospective, open study and were randomized into two groups. In Group I, the patients were tracheally extubated as soon as possible after surgery. In Group II, the patients were sedated with propofol for 2 h after surgery. V(O2), catecholamine concentration, mean arterial pressure (MAP), and heart rate (HR) were measured during anesthesia, at extubation, and 30 min after extubation. V(O2) and noradrenaline on extubation and mean V(O2) during recovery were significantly higher in Group II than in Group I (V(O2) for Group I: preextubation 215 +/- 46 mL/min, recovery 198 +/- 38 mL/min; for Group II: preextubation 320 +/- 75 mL/min, recovery 268 +/- 49 mL/min; noradrenaline on extubation for Group I: 207 +/- 76 pg/mL, for Group II: 374 +/- 236 pg/ mL). Extubation induced a significant increase in MAP. MAP, HR, and adrenaline values were not statistically different between groups. In conclusion, delayed recovery after neurosurgery cannot be recommended as a mechanism of limiting the metabolic and hemodynamic consequences from emergence from general anesthesia. IMPLICATIONS: In this study, we tested the hypothesis that delayed recovery after neurosurgery would attenuate the consequences of recovery from general anesthesia. As markers of stress, oxygen consumption and noradrenaline blood levels were higher after delayed versus early recovery. Thus, delayed recovery cannot be recommended as a mechanism of limiting the metabolic and hemodynamic consequences from emergence after neurosurgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Na(+)-independent alanine-serine-cysteine transporter 1 (Asc-1) is exclusively expressed in neuronal structures throughout the central nervous system (CNS). Asc-1 transports small neutral amino acids with high affinity especially for D-serine and glycine (K(i): 8-12 microM), two endogenous glutamate co-agonists that activate N-methyl-D-aspartate (NMDA) receptors through interacting with the strychnine-insensitive glycine binding-site. By regulating D-serine (and possibly glycine) levels in the synaptic cleft, Asc-1 may play an important role in controlling neuronal excitability. We generated asc-1 gene knockout (asc-1(-/-)) mice to test this hypothesis. Behavioral phenotyping combined with electroencephalogram (EEG) recordings revealed that asc-1(-/-) mice developed tremors, ataxia, and seizures that resulted in early postnatal death. Both tremors and seizures were reduced by the NMDA receptor antagonist MK-801. Extracellular recordings from asc-1(-/-) brain slices indicated that the spontaneous seizure activity did not originate in the hippocampus, although, in this region, a relative increase in evoked synaptic responses was observed under nominal Mg(2+)-free conditions. Taken together with the known neurochemistry and neuronal distribution of the Asc-1 transporter, these results indicate that the mechanism underlying the behavioral hyperexcitability in mutant mice is likely due to overactivation of NMDA receptors, presumably resulting from elevated extracellular D-serine. Our study provides the first evidence to support the notion that Asc-1 transporter plays a critical role in regulating neuronal excitability, and indicate that the transporter is vital for normal CNS function and essential to postnatal survival of mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The differentiation of CD4(+) or CD8(+) T cells following priming of naive cells is central in the establishment of the immune response against pathogens or tumors. However, our understanding of this complex process and the significance of the multiple subsets of differentiation remains controversial. Gene expression profiling has opened new directions of investigation in immunobiology. Nonetheless, the need for substantial amount of biological material often limits its application range. In this study, we have developed procedures to perform microarray analysis on amplified cDNA from low numbers of cells, including primary T lymphocytes, and applied this technology to the study of CD4 and CD8 lineage differentiation. Gene expression profiling was performed on samples of 1000 cells from 10 different subpopulations, defining the major stages of post-thymic CD4(+) or CD8(+) T cell differentiation. Surprisingly, our data revealed that while CD4(+) and CD8(+) T cell gene expression programs diverge at early stages of differentiation, they become increasingly similar as cells reach a late differentiation stage. This suggests that functional heterogeneity between Ag experienced CD4(+) and CD8(+) T cells is more likely to be located early during post-thymic differentiation, and that late stages of differentiation may represent a common end in the development of T-lymphocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tocopherols (vitamin E) are lipophilic antioxidants that are synthesized by all plants and are particularly abundant in seeds. Two tocopherol-deficient mutant loci in Arabidopsis thaliana were used to examine the functions of tocopherols in seedlings: vitamin e1 (vte1), which accumulates the pathway intermediate 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ); and vte2, which lacks all tocopherols and pathway intermediates. Only vte2 displayed severe seedling growth defects, which corresponded with massively increased levels of the major classes of nonenzymatic lipid peroxidation products: hydroxy fatty acids, malondialdehyde, and phytoprostanes. In the absence of pathogens, the phytoalexin camalexin accumulated in vte2 seedlings to levels 100-fold higher than in wild-type or vte1 seedlings. Similarly, gene expression profiling in wild-type, vte1, and vte2 seedlings indicated that increased levels of nonenzymatic lipid peroxidation in vte2 corresponded to increased expression of many defense-related genes, which were not induced in vte1. Both biochemical and transcriptional analyses of vte2 seedlings indicate that nonenzymatic lipid peroxidation plays a significant role in modulating plant defense responses. Together, these results establish that tocopherols in wild-type plants or DMPBQ in vte1 plants limit nonenzymatic lipid peroxidation during germination and early seedling development, thereby preventing the inappropriate activation of transcriptional and biochemical defense responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY The results presented here contribute to a better understanding of the crucial molecular relationships and signalling cues exchanged by several fundamental cell types (epidermal keratinocytes, dermal fibroblasts, immune and endothelial cells) of the skin. Importantly we provide evidence to directly implicate Wnt/ß-catenin signalling as a putative player in different cell types (keratinocytes and neutrophils) in mediation of the cutaneous inflammatory response (Fart A). Finally we highlight the importance of several molecules, specifically expressed in the hair follicle stem cell niche to the morphogenesis and homeostasis of the hair follicle (Part B). PART A Currently the body of work pertaining to Wnt signalling and immune cells largely focuses on Wnt signalling in the development of these cells. The data presented here suggests a novel mechanism in which Wnt signalling appears to modulate immune cell recruitment to the skin. Keratinocytes are major contributors to early inflammatory responses by the release of chemokines which recruit immune cells. The resultant inflammatory response is a dynamic process of sequentially infiltrating immune cells governed by a network of growth factors, chemokines and cytokines. In wild type mice the response is typified by a rapid and substantial infiltration of neutrophils followed at later time points by macrophages and Tcells. The expression of the canonical Wnt pathway activating ligand, Wnt3a, is able to induce a strong neutrophil infiltration in the dermis. This response originates in keratinocytes, as it is abrogated upon keratinocyte-specific ablation of ß-catenin. Notably, this suggests that the crucial cross talk between these resident cells and recruited immune cells is, in part, mediated by Wnt signalling. In corroboration of this role of Wnt-mediated recruitment of neutrophils, expression of the Wnt inhibitory ligand sFRPI during acute inflammation results in a dramatic 'dampening' of immune cell infiltration in particular of neutrophil chemoattraction. Importantly, an intrinsic Wnt signalling pathway is essential for neutrophil chemoattraction in response to inflammatory stimuli. There is a marked reduction of neutrophil infiltration in mice grafted with a ß-catenin deficient bone marrow upon TPA induced cutaneous inflammation. Additionally, neutrophils lacking Wnt/ß-catenin fail to respond to IFNγ, an early inflammatory cue, in vitro. In combination, these data indicate a potent function of Wnt signalling in immune cell recruitment and the modulation of the inflammatory response. PART B Tissue specific stem cells form the cellular base on which tissue homeostasis and repair of adult tissue relies. The maintenance of this stem cell pool is highly dependent on the immediate environment or niche. We have identified three genes, the fibroblast growth factor receptor 1 (FGFR1), serpin protease inhibitor (serpin F1) and the haematopoietic cell phosphatase (Hcph) to be specifically expressed in a small population of stromal cells which are in close contact to bulge stem cells. These specialized stromal cells might represent an essential mesenchymal component of the skin stem cell niche and may regulate stem cell proliferation and differentiation. Multiple FGFR1 isoforms are generated through alternate transcript splicing and are able to interact with both FGFs and cell adhesion molecules. Two predominant forms of the receptor are FGFR1-α and FGFR1-ß. Expression of a dominant negative form of the alpha isoform prevents hair follicle morphogenesis altogether. Given that FGFR1-ß signals principally through the FGF ligands, this data indicates that FGF signalling is dispensable for follicle morphogenesis. Moreover the loss of follicular morphogenesis upon suggests a requirement for signalling via cell adhesion molecule association with the receptor as FGFR1 α has a greater affinity for these molecules. The expression of the second candidate niche gene serpin f1, lead to the complete ablation of hair follicle morphogenesis. The serpin f1 product, pigment-epithelial derived factor (PEDF) has potent anti-angiogenic effects. Immunohistochemical analysis using CD31, a endothelial cell marker, revealed that although these cells are present, they have are disorganised and do not form vessels. Interestingly, endothelial cells have been found to contribute to the neuronal stem cell niche and our results suggest a similar mechanism in the skin. SHP1, the Hcph gene product, is a phosphatase which acts in the haematopoetic system. Motheaten mice carrying spontaneous mutations in the Hcph gene have patchy alopecia in their skin and severe defects in their haematopoietic system. However the haematopoietic rescue of the mouse does not result in normal follicular homeostasis. Additionally, ablation of Hcph in either the dermal or keratinocyte compartments of the skin produces hair follicles with abberant morphologies. This data indicates that although SHP1 is not essential for hair follicle morphogenesis it is required in both epidermal and dermal compartments to maintain follicular morphology. RÉSUMÉ PARTIE A Jusqu'à présent, les travaux dédiés à l'étude de la voie de signalisation Wnt dans le système immunitaire se sont essentiellement concentrés sur son rôle dans le développement des cellules immunitaires. Les données présentées ici suggèrent fortement et de manière nouvelle, l'existence d'un mécanisme par lequel la voie de signalisation Wnt/ß-caténine module le recrutement de cellules immunitaires dans un tissu périphérique, la peau, et ainsi la réponse inflammatoire cutanée. La réponse inflammatoire cutanée est un processus dynamique d'infiltration séquentielle de diverses cellules immunitaires, orchestré par un réseau de facteurs de croissance, chémokines et cytokines. Les kératinocytes sont des contributeurs majeurs à la réponse inflammatoire précoce par la libération de chémokines qui permettent ensuite de recruter les cellules immunitaires. Dans des souris sauvages, la réponse est d'abord caractérisée par une infiltration rapide et substantielle de neutrophiles, suivie par celle des macrophages et des lymphocytes T. L'expression d'un ligand activateur de le voie canonique de signalisation Wnt (après injection infra-dermique de fibroblastes sur-exprimant Wnt-3a) induit une infiltration dermique très marquée de neutrophiles. De plus, la réponse est éliminée en l'absence de ß-caténine spécifiquement dans les kératinocytes, indiquant que ces cellules sont à l'origine de la réponse. De manière remarquable, ceci suggère qu'une signalisation cruciale entre ces cellules résidentes de la peau et les cellules immunitaires recrutées est, au moins en partie, médiée par la voie Wnt. Corroborant ce rôle de la voie Wnt/ß-caténine dans le recrutement des neutrophiles, l'expression d'un ligand inhibiteur de la voie (sFRP1) résulte au cours d'une inflammation aigüe en une réduction spectaculaire de l'infiltration des cellules immunitaires en général, et des neutrophiles en particulier. De manière importante, la voie de signalisation Wnt est intrinsèquement requise pour la chémoattraction des neutrophiles en réponse à un stimulus inflammatoire. En effet, suite à une inflammation cutanée induite par un ester de phorbol (TPA), une réduction notable de l'infiltration des neutrophiles est observée dans des souris préalablement greffées avec de la moelle osseuse constituée de cellules déficientes en ß-caténine. De plus, in vitro, les neutrophiles sans ß-caténine ne répondent pas à une stimulation par l'interféron γ, qui est pourtant un signal inflammatoire établi in vivo. En conclusion, nos données indiquent que la voie de signalisation Wnt/ß-caténine joue une fonction active dans le recrutement des cellules immunitaires vers un organe périphérique, la peau, ainsi que dans la modulation, à plusieurs niveaux, de la réponse inflammatoire cutanée. PARTIE B Les cellules souches tissu-spécifiques forment la base cellulaire sur laquelle repose l'homéostase et la réparation tissulaires chez l'adulte. La maintenance de ce réservoir de cellules souches est hautement dépendante de leur environnement cellulaire immédiat, encore appelé «niche des cellules souches». Dans la peau, ces cellules stromales spécialisées représentent un compartiment mésenchymateux essentiel de la niche des cellules souches en régulant leurs prolifération et différentiation. Nous avons identifié trois gènes, le «récepteur 1 àux facteurs de croissance des fibroblastes » (Fgfr1 ), l' «inhibiteur de protéase à sérine » (serpinf1 ou pedf) et la « phosphatase des cellules hématopoiétiques » (Hcph ou Ptpn6), comme spécifiquement exprimés par une petite population de cellules stromales qui sont étroitement associées aux cellules souches de la peau (localisées au niveau du bombement du follicule pileux). Pour analyser leur fonction dans ce contexte, nous avons utilisé un test de reconstitution complète de peau murine en combinaison à des. transductions géniques basées sur l'utilisation de lentivirus. Ce test repose sur le mélange de deux compartiments cellulaires, épidermique (kératinocytes) et dermique (fibroblastes), greffés sur une zone ouverte de peau du dos d'une souris pour ensemble reconstituer la peau. Des isoformes multiples de FGFR1 sont générées par épissage alternatif de transcrits et sont capables d'interagir à la fois avec les FGFs (facteurs de croissance des fibroblastes) et les molécules d'adhésion cellulaires. Les deux formes prédominantes du récepteur, FGFR1-α et FGFR1-ß, ne différent que par le «domaine ressemblant aux immunoglobulines 1 » (immunoglobulin-like 1 domain), absent de FGFR1-ß. De plus, FGFR1-ß a une affinité plus grande pour les FGFs et plus faible pour les molécules d'adhésion cellulaires telles que la Ncadhérine (connue pour activer FGFR). La sur-expression de l'une ou l'autre des formes n'empêche pas la morphogenèse folliculaire mais conduit à la formation de follicules aberrants. Toutefois, une différence phénotypique majeure est observée lorsqu'une forme «Dominant-Négatif » (DN) est exprimée dans le compartiment dermique. La sur-expression de FGFR1-ß DN conduit en effet à la formation de follicules petits et tronqués, avec des gaines épithéliales et un bulbe élargis ainsi qu'une petite papille dermique. Par contre, l'expression de FGFR1-α DN abolit complètement la morphogenèse folliculaire. Etant donné que la signalisation par FGFR1-ß est principalement dépendante des ligands FGFs, ces données indiquent que la signalisation par ceux-cì est non-nécessaire à la morphogenèse folliculaire. De plus, l'abolition du processus par la sur-expression de FGFR1-a DN suggëre une signalisation nécessaire entre le récepteur FGFR1 et une ou des molécules d'adhésion cellulaire. L'expression de notre second candidat comme gène spécifique de la niche des cellules souches de la peau, serpinf1, prévient la morphogenèse folliculaire. Seules de petites structures ressemblant à des cystes sont observées après reconstitution de la peau. De plus, dans ces transplants, aucune cellule CD34-positive (marqueur des cellules souches) n'est retrouvée associé à ces cystes. Le produit du gène serpin f1, le «facteur dérivé d'épithélium pigmentaire » (PEDF) est un puissant facteur anti-angiogénique. Nous avons donc analysé la vascularisation des transplants par immunohistochirnies utilisant CD31, un marqueur des cellules endothéliales. Nos résultats révèlent que les cellules endothéliales sont bien présentes, mais de manière désorganisée et ne formant pas de vaisseaux. De manière intéressante, les cellules endothéliales contribuent activement à la niche des cellules souches neuronales, et nos résultats suggèrent donc l'existence possible d'un mécanisme similaire dans la peau. SHP1, le produit du gène Hcph, est une phosphatase quì agit dans le système hématopoiétique. Les souris « motheaten »qui portent des mutations spontanées du gène ont une alopécie inégale au niveau de la peau et de sévères troubles du système hématopoiétique. Pour s'assurer que le phénotype observé au niveau de la peau n'est pas une conséquence d'un défaut du système hématopoiétique, nous avons transplanté des souris Hcph -/- avec de la moelle osseuse sauvage afin de restaurer la fonction de SHP 1 dans le système hématopoiétique. Toutefois, le défaut de morphologie folliculaire est maintenu. De plus, l'ablation d'Hcph dans le compartiment dermique ou épidermique d'essais de reconstitution de peau conduit à la production de follicules pileux avec des morphologies aberrantes. Ces données indiquent que SHP1 n'est pas essentiel à la morphogenèse folliculaire mais est toutefois requis à la fois dans les compartiments épidermiques et dermiques pour la maintenance de la forme du follicule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increased oxidative stress and alteration of the antioxidant systems have been observed in schizophrenia. Glutathione (GSH), a major redox regulator, is decreased in patients' cerebrospinal fluid, prefrontal cortex in vivo and striatum post-mortem tissue. Most importantly, there is genetic and functional evidence for the implication of the gene of the glutamate cysteine ligase (GCL) catalytic subunit, the key GSH-synthesizing enzyme. We have developed animal models for a GSH deficit to study the consequences of such deficit on the brain development. A GSH deficit combined with elevated dopamine (DA) during development leads to reduced parvalbumin (PV) expression in a subclass of GABA interneurons in rat anterior cingulate cortex (ACC). Similar changes are observed in postmortem brain tissue of schizophrenic patients. GSH dysregulation increases vulnerability to oxidative stress, that in turn could lead to cortical circuit anomalies in the schizophrenic brain. In the present study, we use a GCL modulatory subunit (GCLM) knock-out (KO) mouse model that presents up to 80% decreased brain GSH levels. During postnatal development, a subgroup of animals from each genotype is exposed to elevated oxidative stress induced by treatment with the DA reuptake inhibitor GBR12909. Results reveal a significant genotype-specific delay International Congress on Schizophrenia Research 136 10. 10. Neuroanatomy, Animal Downloaded from http://schizophreniabulletin.oxfordjournals.org at Bibliotheque Cantonale et Universitaire on June 18, 2010 in cortical PV expression at postnatal day P10 in GCLM-KO mice, as compared to wild-type. This effect seems to be further exaggerated in animals treated with GBR12909 from P5 to P10. At P20, PV expression is no longer significantly reduced in GCLM-KO ACC without GBR but is reduced if GBR is applied from P10 to P20. However, our result show that GCLM-KO mice exhibit increased oxidative stress, cortical altered myelin development as shown by MBP marker, and more specifically impairment of the peri-neuronal net known to modulate PV connectivity. In addition, we also observe a reduced PV expression in the ventro-temporal hippocampus of adult GCLM-KO mice, suggesting that anomalies of the PV interneurons prevail at least in some brain regions throughout the adulthood. Interestingly, the power of kainate-induced gamma oscillations, known to be dependent on proper activation of PV interneuron's, is also lower in hippocampal slices of adult GCLM KO mice. These results suggest that the PV positive GABA interneurons is particularly vulnerable to increased oxidative stress

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early ocular development is controlled by a complex network of transcription factors, cell cycle regulators, and diffusible signalling molecules. Together, these molecules regulate cell proliferation and apoptosis, and specify retinal fate. NKX5-3 is a homeobox transcription factor implicated in eye development. The analysis of the 5'-flanking region of the mouse Nkx5-3 gene revealed a predicted TATA-less promoter sequence between -416 and -166 of the translation start site. To functionally characterise Nkx5-3 promoter activity, serial deletions of the promoter sequence were introduced in pGL-3 basic vector and promoter activity of these 5'- and 3'-deleted constructions was tested in HeLa and CHO cells. Transactivation assays identified a region between -350 and -296 exhibiting promoter-like activity. Combined analysis by deletions and point mutations showed that this sequence, containing multiple Sp1 binding sites was necessary to promote transcriptional activity. Binding of Sp1 to this region was confirmed by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation, using an antibody specific for Sp1. Altogether, these results demonstrated that the immediate upstream region of Nkx5-3 gene possessed a strong intrinsic promoter activity in vitro, suggesting a potential role in Nkx5-3 transcription in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of microtubule-associated protein 1a (MAP1a) in the developing rat spinal cord was studied using the monoclonal antibody BW6. Immunoblots of microtubule preparations revealed the presence of MAP1a in spinal cord tissue of rats aged embryonal day 16 and postnatal day 0. The spinal cord matrix layer, between embryonal days 12-17, displayed a pattern of MAP1a-positive processes, horizontally oriented in between the membrane limitans interna and externa. The mantle layer stained intensely for MAP1a between embryonal day 12 and postnatal day 2. MAP1a was found in neuronal cell bodies, axons and dendrites, located mainly in the ventral and intermediate mantle layer. In the marginal layer, MAP1a-positive axons could be observed between embryonal days 14-18. During further development, the intensity of the MAP1a staining in the spinal columns gradually decreased. These expression patterns indicate an involvement of MAP1a in the proliferation and differentiation of neuroblasts, and the maturation of the long spinal fiber systems, i.e. early events in spinal cord development

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An adverse endogenous environment during early life predisposes the organism to develop metabolic disorders. We evaluated the impact of intake of an iso-caloric fructose rich diet (FRD) by lactating mothers (LM) on several metabolic functions of their male offspring. On postnatal d 1, ad libitum eating, lactating Sprague-Dawley rats received either 10% F (wt/vol; FRD-LM) or tap water (controls, CTR-LM) to drink throughout lactation. Weaned male offspring were fed ad libitum a normal diet, and body weight (BW) and food intake were registered until experimentation (60 d of age). Basal circulating levels of metabolic markers were evaluated. Both iv glucose tolerance and hypothalamic leptin sensitivity tests were performed. The hypothalamus was dissected for isolation of total RNA and Western blot analysis. Retroperitoneal (RP) adipose tissue was dissected and either kept frozen for gene analysis or digested to isolate adipocytes or for histological studies. FRD rats showed increased BW and decreased hypothalamic sensitivity to exogenous leptin, enhanced food intake (between 49-60 d), and decreased hypothalamic expression of several anorexigenic signals. FRD rats developed increased insulin and leptin peripheral levels and decreased adiponectinemia; although FRD rats normally tolerated glucose excess, it was associated with enhanced insulin secretion. FRD RP adipocytes were enlarged and spontaneously released high leptin, although they were less sensitive to insulin-induced leptin release. Accordingly, RP fat leptin gene expression was high in FRD rats. Excessive fructose consumption by lactating mothers resulted in deep neuroendocrine-metabolic disorders of their male offspring, probably enhancing the susceptibility to develop overweight/obesity during adult life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of Wnt antagonists in the carcinogenesis of esophageal adenocarcinoma (EAC) remains unclear. We hypothesized that downregulation of the Wnt inhibitory factor-1 (WIF-1) might be involved in the neoplastic progression of Barrett's esophagus (BE). We analyzed the DNA methylation status of the WIF-1 promoter in normal, preneoplastic, and neoplastic samples from BE patients and in EAC cell lines. We investigated the role of WIF-1 on EAC cell growth and the chemosensitization of the cells to cisplatin. We found that silencing of WIF-1 correlated with promoter hypermethylation. EAC tissue samples showed higher levels of WIF-1 methylation compared to the matched normal epithelium. In addition, we found that WIF-1 hypermethylation was more frequent in BE samples from patients with EAC than in BE samples from patients who had not progressed to EAC. Restoration of WIF-1 in cell lines where WIF-1 was methylation-silenced resulted in growth suppression. Restoration of WIF-1 could sensitize the EAC cells to the chemotherapy drug cisplatin. Our results suggest that silencing of WIF-1 through promoter hypermethylation is an early and common event in the carcinogenesis of BE. Restoring functional WIF-1 might be used as a new targeted therapy for the treatment of this malignancy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that transcription from the vaccinia virus 7.5K early promoter is reactivated late in infection (J. Garcés, K. Masternak, B. Kunz, and R. Wittek, J. Virol. 67:5394-5401, 1993). To identify the sequence elements mediating reactivation, we constructed recombinant viruses harboring deletions, substitutions, or insertions in the 7.5K promoter or its flanking regions. The analysis of these viruses showed that sequences both upstream as well as downstream of the transcription initiation site contribute to reactivation of the 7.5K promoter. We tested whether reactivation could be explained by a high affinity of vaccinia virus early transcription factor to reactivated promoters. Bandshift experiments using purified protein showed that promoters which bind the factor with high affinity in general also have high early transcriptional activity. However, no correlation was found between affinity of the factor and reactivation. Interestingly, overexpression of recombinant early transcription factor in vaccinia virus-infected cells resulted in a shutdown of late transcription and in reactivation of promoters, which are normally not reactivated.