103 resultados para Human Bone-marrow


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Cancer stem cells (CSC) display plasticity and self renewal properties reminiscent of normal tissue stem cells but the events responsible for their emergence remain obscure. We have recently identified CSC in Ewing sarcoma family tumors (ESFT) and shown that they arise from mesenchymal stem cells from the bone marrow. Objective of the study: To analyze the mechanisms underlying cancer stem cell development in ESFT. Methods: Primary human mesenchymal stem cells (MSC) isolation from adult and pediatric bone marrow. Retroviral delivery of fusion protein (EWS-FLI1) to primary MSC, and transcriptional and phenotypical analysis. Results: We show that the EWS-FLI-1 fusion gene, associated wit 85-90% of ESFT and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2 and NANOG in human pediatric MSC (hpMSC) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSC expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWSFLI- 1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Conclusion: Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a cancer stem cell phenotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: To determine the extent to which major histoincompatibilities are recognized after bone marrow transplantation, we characterized the specificity of the cytotoxic T lymphocytes isolated during graft-versus-host disease. We studied three patients transplanted with marrow from donors who were histoincompatible for different types of HLA antigens. METHODS: Patient 1 was mismatched for one "ABDR-antigen" (HLA-A2 versus A3). Two patients were mismatched for antigens that would usually not be taken into account by standard selection procedures: patient 2 was mismatched for an "HLA-A subtype" (A*0213 versus A*0201), whereas patient 3 was mismatched for HLA-C (HLA-C*0501 versus HLA-C*0701). All three HLA class I mismatches were detected by a pretransplant cytotoxic precursor test. RESULTS: Analysis of the specificity of the cytotoxic T lymphocyte clones isolated after transplantation showed that the incompatibilities detected by the pretransplant cytotoxic precursor assay were the targets recognized during graft-versus-host disease. CONCLUSIONS: Independent of whether the incompatibility consisted of a "full" mismatch, a "subtype" mismatch, or an HLA-C mismatch, all clones recognized the incompatible HLA molecule. In addition, some of these clones had undergone antigen selection and were clearly of higher specificity than the ones established before transplantation, indicating that they had been participating directly in the antihost immune response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Macrophage-mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg-II) in macrophage function remains elusive. This study characterizes the role of Arg-II in macrophage inflammatory responses and its impact on obesity-linked type II diabetes mellitus and atherosclerosis. METHODS AND RESULTS: In human monocytes, silencing Arg-II decreases the monocytes' adhesion to endothelial cells and their production of proinflammatory mediators stimulated by oxidized low-density lipoprotein or lipopolysaccharides, as evaluated by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Macrophages differentiated from bone marrow cells of Arg-II-deficient (Arg-II(-/-)) mice express lower levels of lipopolysaccharide-induced proinflammatory mediators than do macrophages of wild-type mice. Importantly, reintroducing Arg-II cDNA into Arg-II(-/-) macrophages restores the inflammatory responses, with concomitant enhancement of mitochondrial reactive oxygen species. Scavenging of reactive oxygen species by N-acetylcysteine prevents the Arg-II-mediated inflammatory responses. Moreover, high-fat diet-induced infiltration of macrophages in various organs and expression of proinflammatory cytokines in adipose tissue are blunted in Arg-II(-/-) mice. Accordingly, Arg-II(-/-) mice reveal lower fasting blood glucose and improved glucose tolerance and insulin sensitivity. Furthermore, apolipoprotein E (ApoE)-deficient mice with Arg-II deficiency (ApoE(-/-)Arg-II(-/-)) display reduced lesion size with characteristics of stable plaques, such as decreased macrophage inflammation and necrotic core. In vivo adoptive transfer experiments reveal that fewer donor ApoE(-/-)Arg-II(-/-) than ApoE(-/-)Arg-II(+/+) monocytes infiltrate into the plaque of ApoE(-/-)Arg-II(+/+) mice. Conversely, recipient ApoE(-/-)Arg-II(-/-) mice accumulate fewer donor monocytes than do recipient ApoE(-/-)Arg-II(+/+) animals. CONCLUSIONS: Arg-II promotes macrophage proinflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. Targeting Arg-II represents a potential therapeutic strategy in type II diabetes mellitus and atherosclerosis. (J Am Heart Assoc. 2012;1:e000992 doi: 10.1161/JAHA.112.000992.).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the past decade, use of autologous bone marrow-derived mononuclear cells (BMCs) has proven to be safe in phase-I/II studies in patients with myocardial infarction (MI). Taken as a whole, results support a modest yet significant improvement in cardiac function in cell-treated patients. Skeletal myoblasts, adipose-derived stem cells, and bone marrow-derived mesenchymal stem cells (MSCs) have also been tested in clinical studies. MSCs expand rapidly in vitro and have a potential for multilineage differentiation. However, their regenerative capacity decreases with aging, limiting efficacy in old patients. Allogeneic MSCs offer several advantages over autologous BMCs; however, immune rejection of allogeneic cells remains a key issue. As human MSCs do not express the human leukocyte antigen (HLA) class II under normal conditions, and because they modulate T-cell-mediated responses, it has been proposed that allogeneic MSCs may escape immunosurveillance. However, recent data suggest that allogeneic MSCs may switch immune states in vivo to express HLA class II, present alloantigen and induce immune rejection. Allogeneic MSCs, unlike syngeneic ones, were eliminated from rat hearts by 5 weeks, with a loss of functional benefit. Allogeneic MSCs have also been tested in initial clinical studies in cardiology patients. Intravenous allogeneic MSC infusion has proven to be safe in a phase-I trial in patients with acute MI. Endoventricular allogeneic MSC injection has been associated with reduced adverse cardiac events in a phase-II trial in patients with chronic heart failure. The long-term safety and efficacy of allogeneic MSCs for cardiac repair remain to be established. Ongoing phase-II trials are addressing these issues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chikungunya virus (CHIKV) is the causative agent of an outbreak that began in La Réunion in 2005 and remains a major public health concern in India, Southeast Asia, and southern Europe. CHIKV is transmitted to humans by mosquitoes and the associated disease is characterized by fever, myalgia, arthralgia, and rash. As viral load in infected patients declines before the appearance of neutralizing antibodies, we studied the role of type I interferon (IFN) in CHIKV pathogenesis. Based on human studies and mouse experimentation, we show that CHIKV does not directly stimulate type I IFN production in immune cells. Instead, infected nonhematopoietic cells sense viral RNA in a Cardif-dependent manner and participate in the control of infection through their production of type I IFNs. Although the Cardif signaling pathway contributes to the immune response, we also find evidence for a MyD88-dependent sensor that is critical for preventing viral dissemination. Moreover, we demonstrate that IFN-alpha/beta receptor (IFNAR) expression is required in the periphery but not on immune cells, as IFNAR(-/-)-->WT bone marrow chimeras are capable of clearing the infection, whereas WT-->IFNAR(-/-) chimeras succumb. This study defines an essential role for type I IFN, produced via cooperation between multiple host sensors and acting directly on nonhematopoietic cells, in the control of CHIKV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adult stem cells are instrumental for renewal, regeneration, and repair. Self-renewal and the capacity to generate a tissue for an extended period of time (theoretically a life time) are fundamental properties of adult stem cells that allow longterm tissue reconstruction from a single stem cell as experimentally demonstrated with the bone marrow and the skin. Moreover, human epidermal stem cells (holoclones) can be extensively expanded and manipulated in culture before they are transplanted. We have taken advantage of these unique capacities to demonstrate the feasibility of a single epidermal stem cell approach for ex vivo gene therapy using recessive dystrophic epidermolysis bullosa (RDEB) as a model system. We have demonstrated that is possible to reconstruct a functional epidermis and anchoring fibers from the progeny of a single RDEB epidermal stem cell transduced with a Col7a1 cDNA by means of a SIN retrovirus. Demonstrations of safe proviral insertion, absence of tumorogenicity and of dissemination of the transduced engrafted cells meet regulatory affairs safety requirements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The molecular networks controlling bone homeostasis are not fully understood. The common evolution of bone and adaptive immunity encourages the investigation of shared regulatory circuits. MHC Class II Transactivator (CIITA) is a master transcriptional co-activator believed to be exclusively dedicated for antigen presentation. CIITA is expressed in osteoclast precursors, and its expression is accentuated in osteoporotic mice. We thus asked whether CIITA plays a role in bone biology. To this aim, we fully characterized the bone phenotype of two mouse models of CIITA overexpression, respectively systemic and restricted to the monocyte-osteoclast lineage. Both CIITA-overexpressing mouse models revealed severe spontaneous osteoporosis, as assessed by micro-computed tomography and histomorphometry, associated with increased osteoclast numbers and enhanced in vivo bone resorption, whereas osteoblast numbers and in vivo bone-forming activity were unaffected. To understand the underlying cellular and molecular bases, we investigated ex vivo the differentiation of mutant bone marrow monocytes into osteoclasts and immune effectors, as well as osteoclastogenic signaling pathways. CIITA-overexpressing monocytes differentiated normally into effector macrophages or dendritic cells but showed enhanced osteoclastogenesis, whereas CIITA ablation suppressed osteoclast differentiation. Increased c-fms and receptor activator of NF-κB (RANK) signaling underlay enhanced osteoclast differentiation from CIITA-overexpressing precursors. Moreover, by extending selected phenotypic and cellular analyses to additional genetic mouse models, namely MHC Class II deficient mice and a transgenic mouse line lacking a specific CIITA promoter and re-expressing CIITA in the thymus, we excluded MHC Class II expression and T cells from contributing to the observed skeletal phenotype. Altogether, our study provides compelling genetic evidence that CIITA, the molecular switch of antigen presentation, plays a novel, unexpected function in skeletal homeostasis, independent of MHC Class II expression and T cells, by exerting a selective and intrinsic control of osteoclast differentiation and bone resorption in vivo. © 2014 American Society for Bone and Mineral Research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pallister-Killian syndrome (PKS) is a potentially lethal disorder with facial dysmorphism, pigmentary skin anomalies, developmental delay and major visceral anomalies, such as diaphragmatic hernia, anorectal malformation, and congenital heart disease. PKS is causally associated with mosaic tetrasomy of chromosome 12p. A routine chromosome analysis in peripheral lymphocytes usually fails to detect the mosaic state. A prompt diagnosis rests on clinical awareness and a subsequent chromosome or molecular analysis in fibroblasts, buccal mucosal cells, or bone marrow cells. We report here on three infants with PKS. One infant had aortic dilatation, a previously unreported association in PKS. More importantly, all infants showed a recognizable, though mild, pattern of skeletal changes mainly affecting axial bones, including delayed ossification of the vertebral bodies and pubic bones, flared anterior ribs, and broad metaphyses of the long bones, particularly of the femora. These skeletal changes should be considered as a useful diagnostic sign in PKS. Awareness of the axial skeletal alterations can be helpful in prompting clinicians to search for mosaic tetrasomy 12p and perform chromosomal analysis in appropriate tissue types.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT : Fungal infections have become a major source of diseases in immuncompromised patients, but are quite benign in healthy individuals. As fungi are eukaryotes, and share many biological processes with humans, many antifungal drugs can cause toxicity in the patients. Therefore, the characterization of signaling pathways specific to the anti-fungal immune response is relevant for the better understanding of the disease and the development of new therapeutic approaches. Dectin-1 is the major mammalian pattern recognition receptor for the fungal component zymosan. Dectin-1 is an innate non-Toll-like receptor containing immunoreceptor tyrosine-based activation motifs (ITAMs). Card9, Bc110 and Maltl are proteins that have been shown to play a key role in the Dectin-l-induced signaliñg pathway by controlling Dectin-l-mediated cell activation, cytokine production and innate anti-fungal immunity in mice. Here we investigate the role of the Card9-Bc110-Maltl complex in humans using the monocytic cell line THP-1. We show that Card9 interacts with Bc110 through a CARD-CARD interaction and that interaction of Card9 with Bc110 is required for NF-xB activation. We further demonstrate that Card9 is phosphorylated in its C-terminal part on serine residues. The phosphorylation status of Card9 can influence its ability to active NF-xB, since mutation of the phosphorylation sites increases its ability to activate NF-xB. We find that Card9 is expressed in myeloid derived cells, such as the human monocytic cell lines THP1 and U937, and in human monocyte-enriched PBLs and monocyte-derived DCs. Our findings demonstrate that Card9 is implicated in anti-fungal responses, since silencing of Card9 as well as of Bc110 and Maltl diminishes the capacity of THP1 cells to produce TNF-a in response to zymosan. Interestingly, activation of the NF-xB and MAPK pathway remained normal and levels of TNF-a mRNA produced were also not affected in THP 1 cells silenced for the expression of Card9, Bc110 or Malt1. Using a Malt1 inhibitor, we provide evidence that the proteolytic activity of Malt1 is needed for zymosan-induced TNF-a production in THP 1 cells and bone marrow-derived macrophages of mice, but further experiments are required to confirm these findings and identify the substrate(s) of Malt1. In conclusion, our results reveal an important role for Card9 in the innate immune response of human macrophages to fungi. RÉSUMÉ : Les infections fongiques sont une source majeure de maladie chez les patients immunodéprimés, alors qu'elles sont plutôt bénignes chez les individus sains. Comme les champignons sont des eucaryotes et partagent beaucoup de processus biologiques avec les humains, les médicaments antifongiques peuvent être source de toxicité chez les patients. Il est donc important de mieux caractériser les voies de signalisation intracellulaire des réponses anti-fongiques pour pouvoir développer de nouvelles approches thérapeutiques. La protéine Dectin-1 est le récepteur principal du composé fongique zymosan. Les protéines Card9, Bc110 et Maltl ont été décrites comme jouant un rôle primordial dans les signaux d'activation induits par Dectin-l, en contrôlant l'activité cellulaire, la production de cytokines et la défense anti-fongique dans les souris. Dans cette étude, nous investiguons le rôle du complexe Card9-Bc110-Maltl dans la lignée monocytaire humaine THP1. Nous montrons que Card9 interagit avec Bc110 par une interaction CARD-CARD et que cette interaction est requise pour activer le facteur de transcription NF-xB. Nous observons que Card9 est phosphorylé dans sa partie C-terminale sur des résidus serine et que l'état de phosphorylation de Card9 influence sa capacité à activer NF-xB. En effet, sa capacité à activer NF-xB est augmentée, après mutation des sites de phosphorylation. La génération d'un anticorps spécifique dirigé contre Card9 nous a permis de démontrer que Card9 est exprimé dans des cellules myéloïdes comme les lignées cellulaires monocytiques THP-1 et U-937, ainsi que dans les cellules dendritiques humaines. Nos résultats démontrent que Card9 est impliqué dans la réponse immunitaire antifongique puisque la réduction de l'expression de Card9 ainsi que de Bc110 et de Malt1 diminue la capacité des THP-1 à produire du TNF-a en réponse au zymosan. Par contre, les voies de signalisation NF-xB et MAPK ainsi que les niveaux de mRNA de TNF-a produits en réponse au zymosan ne sont pas affectés dans ces cellules. En utilisant un inhibiteur de Malt1, nous montrons que l'activité protéolytique de Malt1 est nécessaire pour la production de TNF-a induite par le zymosan dans les cellules THP-1 ainsi que dans les macrophages de souris, mais d'autres expériences seront nécessaires pour confirmer cette observation et identifier le(s) substrat(s) de Malt1 responsables de cet effet. En conclusion, nos résultats révèlent un rôle important de la protéine Card9 dans la réponse immunitaire innée antifongique dans les macrophages humains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Personal results are presented to illustrate the development of immunoscintigraphy for the detection of cancer over the last 12 years, from the early experimental results in nude mice grafted with human colon carcinoma to the most modern form of immunoscintigraphy applied to patients, using I123 labeled Fab fragments from monoclonal anti-CEA antibodies detected by single photon emission computerized tomography (SPECT). The first generation of immunoscintigraphy used I131 labeled, immunoadsorbent purified, polyclonal anti-CEA antibodies and planar scintigraphy, as the detection system. The second generation used I131 labeled monoclonal anti-CEA antibodies and SPECT, while the third generation employed I123 labeled fragments of monoclonal antibodies and SPECT. The improvement in the precision of tumor images with the most recent forms of immunoscintigraphy is obvious. However, we think the usefulness of immunoscintigraphy for routine cancer management has not yet been entirely demonstrated. Further prospective trials are still necessary to determine the precise clinical role of immunoscintigraphy. A case report is presented on a patient with two liver metastases from a sigmoid carcinoma, who received through the hepatic artery a therapeutic dose (100 mCi) of I131 coupled to 40 mg of a mixture of two high affinity anti-CEA monoclonal antibodies. Excellent localisation in the metastases of the I131 labeled antibodies was demonstrated by SPECT and the treatment was well tolerated. The irradiation dose to the tumor, however, was too low at 4300 rads (with 1075 rads to the normal liver and 88 rads to the bone marrow), and no evidence of tumor regression was obtained. Different approaches for increasing the irradiation dose delivered to the tumor by the antibodies are considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chronic inhalation of grain dust is associated with asthma and chronic bronchitis in grain worker populations. Exposure to fungal particles was postulated to be an important etiologic agent of these pathologies. Fusarium species frequently colonize grain and straw and produce a wide array of mycotoxins that impact human health, necessitating an evaluation of risk exposure by inhalation of Fusarium and its consequences on immune responses. Data showed that Fusarium culmorum is a frequent constituent of aerosols sampled during wheat harvesting in the Vaud region of Switzerland. The aim of this study was to examine cytokine/chemokine responses and innate immune sensing of F. culmorum in bone-marrow-derived dendritic cells and macrophages. Overall, dendritic cells and macrophages responded to F. culmorum spores but not to its secreted components (i.e., mycotoxins) by releasing large amounts of macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, monocyte chemoattractant protein (MCP)-1, RANTES, and interleukin (IL)-12p40, intermediate amounts of tumor necrosis factor (TNF), IL-6, IL-12p70, IL-33, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein (IP-10), but no detectable amounts of IL-4 and IL-10, a pattern of mediators compatible with generation of Th1 or Th17 antifungal protective immune responses rather than with Th2-dependent allergic responses. The sensing of F. culmorum spores by dendritic cells required dectin-1, the main pattern recognition receptor involved in β-glucans detection, but likely not MyD88 and TRIF-dependent Toll-like receptors. Taken together, our results indicate that F. culmorum stimulates potently innate immune cells in a dectin-1-dependent manner, suggesting that inhalation of F. culmorum from grain dust may promote immune-related airway diseases in exposed worker populations.