166 resultados para Holliday junction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. Results: An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours ("full stop" and "normal deceleration"). The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity), by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p < 0.05) with increasing concentrations of metals on the particles (iron, copper and manganese, which were all strongly correlated with each other). Occludin was also negatively correlated with the intensity of reactive oxidative species. The concentrations of interleukin-8 were significantly correlated with increasing organic carbon concentrations. No correlation was observed between occludin and interleukin-8, nor between reactive oxidative species and interleukin-8. Conclusion: These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress. [Authors]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently described the neuroimaging and clinical findings in 6 children with cerebellar clefts and proposed that they result from disruptive changes following prenatal cerebellar hemorrhage. We now report an additional series of 9 patients analyzing the clinical and neuroimaging findings. The clefts were located in the left cerebellar hemisphere in 5 cases, in the right in 3, and bilaterally in one child who had bilateral cerebellar hemorrhages as a preterm infant at 30 weeks gestation. In one patient born at 24 weeks of gestation a unilateral cerebellar hemorrhage has been found at the age of 4 months. Other findings included disordered alignment of the folia and fissures, an irregular gray/white matter junction, and abnormal arborization of the white matter in all cases. Supratentorial abnormalities were found in 4 cases. All but 2 patients were born at term. We confirm the distinct neuroimaging pattern of cerebellar clefts. Considering the documented fetal cerebellar hemorrhage in our first series, we postulate that cerebellar clefts usually represent residual disruptive changes after a prenatal cerebellar hemorrhage. Exceptionally, as now documented in 2 patients, cerebellar clefts can be found after neonatal cerebellar hemorrhages in preterm infants. The short-term outcome in these children was variable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lesions of anatomical brain networks result in functional disturbances of brain systems and behavior which depend sensitively, often unpredictably, on the lesion site. The availability of whole-brain maps of structural connections within the human cerebrum and our increased understanding of the physiology and large-scale dynamics of cortical networks allow us to investigate the functional consequences of focal brain lesions in a computational model. We simulate the dynamic effects of lesions placed in different regions of the cerebral cortex by recording changes in the pattern of endogenous ("resting-state") neural activity. We find that lesions produce specific patterns of altered functional connectivity among distant regions of cortex, often affecting both cortical hemispheres. The magnitude of these dynamic effects depends on the lesion location and is partly predicted by structural network properties of the lesion site. In the model, lesions along the cortical midline and in the vicinity of the temporo-parietal junction result in large and widely distributed changes in functional connectivity, while lesions of primary sensory or motor regions remain more localized. The model suggests that dynamic lesion effects can be predicted on the basis of specific network measures of structural brain networks and that these effects may be related to known behavioral and cognitive consequences of brain lesions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8). This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12) in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cetuximab significantly enhances efficacy of radiotherapy and chemotherapy in head and neck cancer. We investigated the safety and feasibility of adding cetuximab to neoadjuvant chemoradiation of locally advanced esophageal cancer. Methods: Pts with resectable, locally advanced squamous cell carcinoma (SCC) or adenocarcinoma (AC) of the thoracic esophagus or gastroesophageal junction (staged by EUS, CT and PET scan) were treated with 2 cycles of induction chemotherapy (docetaxel 75mg/m2, cisplatin 75mg/m2 q3w and weekly cetuximab 250mg/m2), followed by concomitant chemo- immuno-radiation therapy (CIRT: docetaxel 20mg/m2, cisplatin 25mg/m2 and cetuximab 250mg/m2 weekly five times concomitant with 45 Gy radiotherapy in 25 fractions); followed by surgery 4-8 weeks later. The phase I part consisted of 2 cohorts of 7 patients each, without and with docetaxel during CIRT, respectively. Interpatient dose-escalation (adding docetaxel during CIRT) was possible if < 2 out of 7 pts of the 1st cohort experienced limiting toxicity. Having finished the phase 1 part, 13 additional patients were treated with docetaxel-containing CIRT in a phase II part. Pathological response was evaluated according to the Mandard classification. Results: 27 pts from 12 institutions were included. As of today, results from 20 pts are available (cohort 1: 7, cohort 2: 7, phase ll : 6). Median age was 64yrs (range 47-71). 11 AC; 9 SCC. 19 pts (95%) completed CIRT (1 pt stopped treatment during induction therapy due to sepsis). 17 pts underwent resection (no surgery: 1pt for PD, 1pt for cardiac reasons). Grade 3 toxicities during CIRT included anorexia 15%, dysphagia/esophagitis 15%, fatigue 10%, nausea 10%, pruritus 5%, dehydration 5%, nail changes 5% and rash 5% .1 pt suffered from pulmonary embolism. 13 pts (65%, intention-to-treat) showed a complete or near complete pathological remission (cohort 1: 5, cohort 2: 4, phase II: 4). Conclusions: Adding cetuximab to preoperative chemoradiation for esophageal cancer is safe and feasible in a community-based multicenter setting. Antineoplastic activity is encouraging with 65% pathological responders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To assess whether thalamic strokes presenting with a central Horner's syndrome (HS) show specific clinicoanatomic patterns. METHODS: From the Lausanne Stroke Registry (period 1993 to spring 2002), the authors selected all patients with thalamic stroke presenting with ipsilateral HS. Patients with complete infarction of the posterior cerebral artery territory, with involvement of middle cerebral artery territory or bilateral lesions, were excluded. Lesions on brain MRI were correlated with standard neuroanatomic templates. RESULTS: Nine patients with thalamic infarction presenting with central HS were found; all showed contralateral ataxic hemiparesis (AH). Lesions involved the anterior or paramedian thalamus and extended to the hypothalamic or rostral paramedian mesencephalic area in all but one subject. Associated clinical signs included dysphasia (two patients), somnolence (six), vertical gaze paresis (two), asterixis (two), and hemihypesthesia (three). CONCLUSION: The alternate clinical pattern of central HS with contralateral AH is a stroke syndrome of the diencephalic-mesencephalic junction, resulting from the involvement of the common arterial supply to the paramedian/anterior thalamus, the posterior hypothalamus and the rostral paramedian midbrain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gap-junction protein connexin36 (Cx36) contributes to control the functions of insulin-producing cells. In this study, we investigated whether the expression of Cx36 is regulated by glucose in insulin-producing cells. Glucose caused a significant reduction of Cx36 in insulin-secreting cell lines and freshly isolated pancreatic rat islets. This decrease appeared at the mRNA and the protein levels in a dose- and time-dependent manner. 2-Deoxyglucose partially reproduced the effect of glucose, whereas glucosamine, 3-O-methyl-D-glucose and leucine were ineffective. Moreover, KCl-induced depolarization of beta-cells had no effect on Cx36 expression, indicating that glucose metabolism and ATP production are not mandatory for glucose-induced Cx36 downregulation. Forskolin mimicked the repression of Cx36 by glucose. Glucose or forskolin effects on Cx36 expression were not suppressed by the L-type Ca(2+)-channel blocker nifedipine but were fully blunted by the cAMP-dependent protein kinase (PKA) inhibitor H89. A 4 kb fragment of the human Cx36 promoter was identified and sequenced. Reporter-gene activity driven by various Cx36 promoter fragments indicated that Cx36 repression requires the presence of a highly conserved cAMP responsive element (CRE). Electrophoretic-mobility-shift assays revealed that, in the presence of a high glucose concentration, the binding activity of the repressor CRE-modulator 1 (CREM-1) is enhanced. Taken together, these data provide evidence that glucose represses the expression of Cx36 through the cAMP-PKA pathway, which activates a member of the CRE binding protein family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Intimal hyperplasia is a vascular remodelling process that occurs after a vascular injury. The mechanisms involved in intimal hyperplasia are proliferation, dedifferentiation, and migration of medial smooth muscle cells towards the subintimal space. We postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, might participate in the development of intimal hyperplasia. Connexin43 (Cx43) expression levels may be altered in intimal hyperplasia, and we therefore evaluated the regulated expression of Cx43 in human saphenous veins in culture in the presence or not of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. METHODS: Segments of harvested human saphenous veins, obtained at the time of bypass graft, were opened longitudinally with the luminal surface uppermost and maintained in culture for 14 days. Vein fragments were then processed for histologic examination, neointimal thickness measurements, immunocytochemistry, RNA, and proteins analysis. RESULTS: Of the four connexins (Cx37, 40, 43, and 45), we focused on Cx43 and Cx40, which we found by real-time polymerase chain reaction to be expressed in the saphenous vein because they are the predominant connexins expressed by smooth muscle cells and endothelial cells. After 14 days of culture, histomorphometric analysis showed a significant increase in the intimal thickness as observed during the process of intimal hyperplasia. A time-course analysis revealed a progressive upregulation of Cx43 to reach a maximal increase of sixfold to eightfold at both transcript and protein levels after 14 days in culture. In contrast, the expression of Cx40, abundantly expressed in the endothelial cells, was not altered. Immunofluorescence showed a large increase in Cx43 within smooth muscle cell membranes of the media layer. The development of intimal hyperplasia in vitro was decreased in presence of fluvastatin and was associated with reduced Cx43 expression. CONCLUSIONS: These data show that Cx43 is increased in vitro during the process of intimal hyperplasia and that fluvastatin could prevent this induction, supporting a critical role for Cx43-mediated gap-junctional communication in the human vein during the development of intimal hyperplasia. CLINICAL RELEVANCE: Stenosis due to intimal hyperplasia is the most common cause of failure of venous bypass grafts. To better understand the development of intimal hyperplasia, we used an ex vivo organ culture model to study saphenous veins harvested from patients undergoing a lower limb bypass surgery. In this model, the morphologic and functional integrity of the vessel wall is maintained and significant intimal hyperplasia development occurs after 14 days in culture. We have postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, may participate in the development of intimal hyperplasia. Indeed, intimal hyperplasia consists of proliferation and migration of smooth muscle cells into the subendothelial space. Intercellular communication is responsible for the direct transfer of ions and small molecules from one cell to the other through gap-junction channels found at cell-cell appositions. No study to date has evaluated whether gap junctional communication is involved in the process of intimal hyperplasia in humans. This assertion was investigated by using the aforementioned organ culture model of intimal hyperplasia in human saphenous veins, and our data support a critical role for Cx43-mediated gap junctional communication in human vein during the development of intimal hyperplasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep-wake cycle is characterized by changes in neuronal network activity. However, for the last decade there is increasing evidence that neuroglial interaction may play a role in the modulation of sleep homeostasis and that astrocytes have a critical impact in this process. Interestingly, astrocytes are organized into communicating networks based on their high expression of connexins, which are the molecular constituents of gap junction channels. Thus, neuroglial interactions should also be considered as the result of the interplay between neuronal and astroglial networks. Here, we investigate the effect of modafinil, a wakefulness-promoting agent, on astrocyte gap junctional communication. We report that in the cortex modafinil injection increases the expression of mRNA and protein of connexin 30 but not those of connexin 43, the other major astroglial connexin. These increases are correlated with an enhancement of intercellular dye coupling in cortical astrocytes, which is abolished when neuronal activity is silenced by tetrodotoxin. Moreover, gamma-hydroxybutyric acid, which at a millimolar concentration induces sleep, has an opposite effect on astroglial gap junctions in an activity-independent manner. These results support the proposition that astroglia may play an important role in complex physiological brain functions, such as sleep regulation, and that neuroglial networking interaction is modified during sleep-wake cycle. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scrotal pain is frequently encountered in practice, as it affects 4 men in 1000, with a peak of incidence between the ages of 45 and 50. After excluding an urological or gastrointestinal cause, referred pain of musculoskeletal origin should be considered, even in the absence of back pain. Described by Dr. Robert Maigne, this referred pain originates from a minor intervertebral dysfunction of the thoracolumbar junction. Imaging of the spine is not helpful. Rather, the diagnosis is made by seeking pain triggered by the mobilization of the lumbar vertebrae; the pinch and roll skin manoeuvre will highlight this referred pain. Treatment is symptomatic, though manual therapies by spine specialists are also recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current state of empirical investigations refers to consciousness as an all-or-none phenomenon. However, a recent theoretical account opens up this perspective by proposing a partial level (between nil and full) of conscious perception. In the well-studied case of single-word reading, short-lived exposure can trigger incomplete word-form recognition wherein letters fall short of forming a whole word in one's conscious perception thereby hindering word-meaning access and report. Hence, the processing from incomplete to complete word-form recognition straightforwardly mirrors a transition from partial to full-blown consciousness. We therefore hypothesized that this putative functional bottleneck to consciousness (i.e. the perceptual boundary between partial and full conscious perception) would emerge at a major key hub region for word-form recognition during reading, namely the left occipito-temporal junction. We applied a real-time staircase procedure and titrated subjective reports at the threshold between partial (letters) and full (whole word) conscious perception. This experimental approach allowed us to collect trials with identical physical stimulation, yet reflecting distinct perceptual experience levels. Oscillatory brain activity was monitored with magnetoencephalography and revealed that the transition from partial-to-full word-form perception was accompanied by alpha-band (7-11 Hz) power suppression in the posterior left occipito-temporal cortex. This modulation of rhythmic activity extended anteriorly towards the visual word form area (VWFA), a region whose selectivity for word-forms in perception is highly debated. The current findings provide electrophysiological evidence for a functional bottleneck to consciousness thereby empirically instantiating a recently proposed partial perspective on consciousness. Moreover, the findings provide an entirely new outlook on the functioning of the VWFA as a late bottleneck to full-blown conscious word-form perception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY Inflammation has evolved as a mechanism to defend the body against invading microorganisms and to respond to injury. It requires the coordinated response of a large number of cell types from the whole organism in a time- and space-dependent fashion. This coordination involves several cell-cell communication mechanisms. Exchange of humoral mediators such as cytokines is a major one. Moreover, direct contact between cells happens and plays a primordial role, for example when macrophages present antigens to lymphocytes. Contact between endothelial cells and leucocytes occurs when the latter cross the blood vessel barrier and transmigrate to the inflammatory site. A particular way by which cells communicate with each other in the course of inflammation, which at this time starts to gain attention, is the intercellular communication mediated by gap junctions. Gap junctions are channels providing a direct pathway (i.e. without transit through the extracellular space) for the diffusion of small molecules between adjacent cells. This process is known as gap junctional intercellular communication (GJIC). The general aim of this thesis was to study a possible involvement of GJIC in the pathophysiology of inflammation. A first part of the work was dedicated to study the implication of GJIC in the modification of vascular endothelial function by inflammation. In a second part, we were interested in the possible role of GJIC in the transmigration of neutrophil polymorphonuclear leucocytes through the endothelium. The main positive finding of this work is that acute inflammation preferentially modulates the expression of connexin 40 (Cx40), a gap junction protein specifically expressed in vascular endothelium. The modulation could be towards overexpression (aortic endothelium of septic rats) or towards downregulation (acutely inflamed mouse lung). We put a lot of efforts in search of possible functions of these modulations, in two directions: a potential protective role of Cx40 increased expression against sepsis-induced endothelial dysfunction, and a facilitating role of Cx40 decreased expression in neutrophil transmigration. To pursue both directions, it seemed logical to study the impact of Cx40 deletion using knock-out mice. Concerning the potential protective role of Cx40 overexpression we encountered a roadblock as we observed, in the aorta, a Cx40 downregulation in wild type mouse whereas Cx40 was upregulated in the rat. Regarding the second direction and using an in vivo approach, we observed that pulmonary neutrophil transmigration was not affected by the genetic deletion of Cx40. In spite of their negative nature, these results are the very first ones regarding the potential implication of GJIC concerning leucocyte transmigration in vivo. Because this process involves such tight cell-cell physical contacts, the hypothesis for a role of GJIC remains attractive.