99 resultados para HEAT SHOCK PROTEINS
Resumo:
By using both conventional and confocal laser scanning microscopy with three monoclonal antibodies recognizing nuclear matrix proteins we have investigated by means of indirect fluorescence whether an incubation of isolated nuclei at the physiological temperature of 37 degrees C induces a redistribution of nuclear components in human K562 erythroleukemia cells. Upon incubation of isolated nuclei for 45 min at 37 degrees C, we have found that two of the antibodies, directed against proteins of the inner matrix network (M(r) 125 and 160 kDa), gave a fluorescent pattern different from that observed in permeabilized cells. By contrast, the fluorescent pattern did not change if nuclei were kept at 0 degrees C. The difference was more marked in case of the 160-kDa polypeptide. The fluorescent pattern detected by the third antibody, which recognizes the 180-kDa nucleolar isoform of DNA topoisomerase II, was unaffected by heat exposure of isolated nuclei. When isolated nuclear matrices prepared from heat-stabilized nuclei were stained by means of the same three antibodies, it was possible to see that the distribution of the 160-kDa matrix protein no longer corresponded to that observable in permeabilized cells, whereas the fluorescent pattern given by the antibody to the 125-kDa polypeptide resembled that detectable in permeabilized cells. The 180-kDa isoform of topoisomerase II was still present in the matrix nucleolar remnants. We conclude that a 37 degrees C incubation of isolated nuclei induces a redistribution of some nuclear matrix antigens and cannot prevent the rearrangement in the spatial organization of one of these antigens that takes place during matrix isolation in human erythroleukemia cells. The practical relevance of these findings is discussed.
Resumo:
The distribution of three nuclear scaffold proteins (of which one is a component of a particular class of nuclear bodies) has been studied in intact K562 human erythroleukemia cells, isolated nuclei, and nuclear scaffolds. Nuclear scaffolds were obtained by extraction with the ionic detergent lithium diidosalicylate (LIS), using nuclei prepared in the absence of divalent cations (metal-depleted nuclei) and stabilized either by a brief heat exposure (20 min at 37C or 42C) or by Cu++ ions at 0C. Proteins were visualized by in situ immunocytochemistry and confocal microscopy. Only a 160-kD nuclear scaffold protein was unaffected by all the stabilization procedures performed on isolated nuclei. However, LIS extraction and scaffold preparation procedures markedly modified the distribution of the polypeptide seen in intact cells, unless stabilization had been performed by Cu++. In isolated nuclei, only Cu++ treatment preserved the original distribution of the two other antigens (M(r), 125 and 126 kD), whereas in heat-stabilized nuclei we detected dramatic changes. In nuclear scaffolds reacted with antibodies to 125 and 126-kD proteins, the fluorescent pattern was always disarranged regardless of the stabilization procedure. These results, obtained with nuclei prepared in the absence of Mg+2 ions, indicate that heat treatment per se can induce changes in the distribution of nuclear proteins, at variance with previous suggestions. Nevertheless, each of the proteins we have studied behaves in a different way, possibly because of its specific association with the nuclear scaffold.
Resumo:
OBJECTIVE: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," published in 2004. DESIGN: Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. METHODS: We used the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation (1) indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost) or clearly do not. Weak recommendations (2) indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. RESULTS: Key recommendations, listed by category, include early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7-10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure > or = 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for postoperative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7-9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B), targeting a blood glucose < 150 mg/dL after initial stabilization (2C); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); and a recommendation against the use of recombinant activated protein C in children (1B). CONCLUSIONS: There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
Resumo:
OBJECTIVES: In patients with septic shock, circulating monocytes become refractory to stimulation with microbial products. Whether this hyporesponsive state is induced by infection or is related to shock is unknown. To address this question, we measured TNF alpha production by monocytes or by whole blood obtained from healthy volunteers (controls), from patients with septic shock, from patients with severe infection (bacterial pneumonia) without shock, and from patients with cardiogenic shock without infection. MEASUREMENTS: The numbers of circulating monocytes, of CD14+ monocytes, and the expression of monocyte CD14 and the LPS receptor, were assessed by flow cytometry. Monocytes or whole blood were stimulated with lipopolysaccharide endotoxin (LPS), heat-killed Escherichia coli or Staphylococcus aureus, and TNF alpha production was measured by bioassay. RESULTS: The number of circulating monocytes, of CD14+ monocytes, and the monocyte CD14 expression were significantly lower in patients with septic shock than in controls, in patients with bacterial pneumonia or in those with cardiogenic shock (p < 0.001). Monocytes or whole blood of patients with septic shock exhibited a profound deficiency of TNF alpha production in response to all stimuli (p < 0.05 compared to controls). Whole blood of patients with cardiogenic shock also exhibited this defect (p < 0.05 compared to controls), although to a lesser extent, despite normal monocyte counts and normal CD14 expression. CONCLUSIONS: Unlike patients with bacterial pneumonia, patients with septic or cardiogenic shock display profoundly defective TNF alpha production in response to a broad range of infectious stimuli. Thus, down-regulation of cytokine production appears to occur in patients with systemic, but not localised, albeit severe, infections and also in patients with non-infectious circulatory failure. Whilst depletion of monocytes and reduced monocyte CD14 expression are likely to be critical components of the hyporesponsiveness observed in patients with septic shock, other as yet unidentified factors are at work in this group and in patients with cardiogenic shock.
Resumo:
Rationale: Peroxisome proliferator activated receptor (PPAR)-beta/delta is a transcription factor that belongs to the PPAR nuclear hormone receptor family, but the role of PPAR-beta/delta in sepsis is unknown. Objectives: We investigated the role of PPAR-beta/delta in murine models of LPS-induced organ injury and dysfunction and cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Methods: Wild-type (WT) and PPAR-beta/delta knockout (1(0) mice and C57BL/6 mice were subjected to LPS for 16 hours. C57BL/6 mice received the PPAR-beta/delta agonist GW0742 (0.03 mg/kg intravenously, 1 h after LPS) or GW0742 plus the PPAR-beta/delta antagonist GSK0660 (0.1 mg/kg intravenously, 30 min before LPS). CD-1 mice subjected to CLP received GW0742 or GW0742 plus GSK0660. Measurements and Main Results: In PPAR-beta/delta KO mice, endotoxemia exacerbated organ injury and dysfunction (cardiac, renal, and hepatic) and inflammation (lung) compared with WT mice. In C57BL/6 mice subjected to endotoxemia, GW0742 significantly (1) attenuated organ (cardiac and renal) dysfunction and inflammation (lung); (2) increased the phosphorylation of Akt and glycogen synthase kinase (GSK)-3 beta; (3) attenuated the increase in extracellular signal-regulated kinase (ERK)1/2 and signal transducer and activator of transcription (STAT)-3 phosphorylation; and (4) attenuated the activation of nuclear factor (NF)-kappa B and the expression of inducible nitric oxide synthase (iNOS). In CD-1 mice subjected to CLP, GW0742 improved 10-day survival. All the observed beneficial effects of GW0742 were attenuated by the PPAR-beta/delta antagonist GSK0660. Conclusions: PPAR-beta/delta protects against multiple organ injury and dysfunction, and inflammation caused by endotoxic shock and improves survival in polymicrobial sepsis by a mechanism that may involve activation of Akt and inhibition of GSK-3 beta and NF-kappa B.
Resumo:
Lipopolysaccharides (LPS, endotoxins) are main constituents of the outer membranes of Gram-negative bacteria, with the 'endotoxic principle' lipid A anchoring LPS into the membrane. When LPS is removed from the bacteria by the action of the immune system or simply by cell dividing, it may interact strongly with immunocompetent cells such as mononuclear cells. This interaction may lead, depending on the LPS concentration, to beneficial (at low) or pathophysiological (at high concentrations) reactions, the latter frequently causing the septic shock syndrome. There is a variety of endogenous LPS-binding proteins. To this class belong lactoferrin (LF) and hemoglobin (Hb), which have been shown to suppress and enhance the LPS-induced cytokine secretion in mononuclear cells, respectively. To elucidate the interaction mechanisms of endotoxins with these proteins, we have investigated in an infrared reflection-absorption spectroscopy (IRRAS) study the interaction of LPS or lipid A monolayers at the air/water interface with LF and Hb proteins, injected into the aqueous subphase. The data are clearly indicative of completely different interaction mechanisms of the endotoxins with the proteins, with the LF acting only at the LPS backbone, whereas Hb incorporates into the lipid monolayer. These data allow an understanding of the different reactivities in the biomedicinal systems.
Resumo:
Needle-free procedures are very attractive ways to deliver vaccines because they diminish the risk of contamination and may reduce local reactions, pain or pain fear especially in young children with a consequence of increasing the vaccination coverage for the whole population. For this purpose, the possible development of a mucosal malaria vaccine was investigated. Intranasal immunization was performed in BALB/c mice using a well-studied Plasmodium berghei model antigen derived from the circumsporozoite protein with the modified heat-labile toxin of Escherichia coli (LTK63), which is devoid of any enzymatic activity compared to the wild type form. Here, we show that intranasal administration of the two compounds activates the T and B cell immune response locally and systemically. In addition, a total protection of mice is obtained upon a challenge with live sporozoites.
Resumo:
The intense systemic inflammatory response characterizing septic shock is associated with an increased generation of free radicals by multiple cell types in cardiovascular and non cardiovascular tissues. The oxygen-centered radical superoxide anion (O2 .-) rapidly reacts with the nitrogen-centered radical nitric oxide (NO.) to form the potent oxidant species peroxynitrite. Peroxynitrite oxidizes multiple targets molecules, either directly or via the secondary generation of highly reactive radicals, resulting in significant alterations in lipids, proteins and nucleic acids, with significant cytotoxic consequences. The formation of peroxynitrite is a key pathophysiological mechanism contributing to the cardiovascular collapse of septic shock, promoting vascular contractile failure, endothelial and myocardial dysfunction, and is also implicated in the occurrence of multiple organ dysfunction in this setting. The recent development of various porphyrin-based pharmacological compounds accelerating the degradation of peroxynitrite has allowed to specifically address these pathophysiological roles of peroxynitrite in experimental septic shock. Such agents, including 5,10,15,20-tetrakis(4- sulfonatophenyl)porphyrinato iron III chloride (FeTTPs), manganese tetrakis(4-N-methylpyridyl)porphyrin (MnTMPyP), Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether)pyridyl porphyrin) (FP-15) and WW-85, have been shown to improve the cardiovascular and multiple organ failure in small and large animal models of septic shock. Therefore, these findings support the development of peroxynitrite decomposition catalysts as potentially useful novel therapeutic agents to restore cardiovascular function in sepsis.