103 resultados para Gram-negative bacteria.
Resumo:
The opportunistic ubiquitous pathogen Pseudomonas aeruginosa strain PAOl is a versatile Gram-negative bacterium that has the extraordinary capacity to colonize a wide diversity of ecological niches and to cause severe and persistent infections in humans. To ensure an optimal coordination of the genes involved in nutrient utilization, this bacterium uses the NtrB/C and/or the CbrA/B two-component systems, to sense nutrients availability and to regulate in consequence the expression of genes involved in their uptake and catabolism. NtrB/C is specialized in nitrogen utilization, while the CbrA/B system is involved in both carbon and nitrogen utilization and both systems activate their target genes expression in concert with the alternative sigma factor RpoN. Moreover, the NtrB/C and CbrA/B two- component systems regulate the secondary metabolism of the bacterium, such as the production of virulence factors. In addition to the fine-tuning transcriptional regulation, P. aeruginosa can rapidly modulate its metabolism using small non-coding regulatory RNAs (sRNAs), which regulate gene expression at the post-transcriptional level by diverse and sophisticated mechanisms and contribute to the fast physiological adaptability of this bacterium. In our search for novel RpoN-dependent sRNAs modulating the nutritional adaptation of P. aeruginosa PAOl, we discovered NrsZ (Nitrogen regulated sRNA), a novel RpoN-dependent sRNA that is induced under nitrogen starvation by the NtrB/C two-component system. NrsZ has a unique architecture, formed of three similar stem-loop structures (SL I, II and II) separated by variant spacer sequences. Moreover, this sRNA is processed in short individual stem-loop molecules, by internal cleavage involving the endoribonuclease RNAse E. Concerning NrsZ functions in P. aeruginosa PAOl, this sRNA was shown to trigger the swarming motility and the rhamnolipid biosurfactants production. This regulation is due to the NrsZ-mediated activation of rhlA expression, a gene encoding for an enzyme essential for swarming motility and rhamnolipids production. Interestingly, the SL I structure of NrsZ ensures its regulatory function on rhlA expression, suggesting that the similar SLs are the functional units of this modular sRNA. However, the regulatory mechanism of action of NrsZ on rhlA expression activation remains unclear and is currently being investigated. Additionally, the NrsZ regulatory network was investigated by a transcriptome analysis, suggesting that numerous genes involved in both primary and secondary metabolism are regulated by this sRNA. To emphasize the importance of NrsZ, we investigated its conservation in other Pseudomonas species and demonstrated that NrsZ is conserved and expressed under nitrogen limitation in Pseudomonas protegens Pf-5, Pseudomonas putida KT2442, Pseudomonas entomophila L48 and Pseudomonas syringae pv. tomato DC3000, strains having different ecological features, suggesting an important role of NrsZ in the adaptation of Pseudomonads to nitrogen starvation. Interestingly the architecture of the different NrsZ homologs is similarly composed by SL structures and variant spacer sequences. However, the number of SL repetitions is not identical, and one to six SLs were predicted on the different NrsZ homologs. Moreover, NrsZ is processed in short molecules in all the strains, similarly to what was previously observed in P. aeruginosa PAOl, and the heterologous expression of the NrsZ homologs restored rhlA expression, swarming motility and rhamnolipids production in the P. aeruginosa NrsZ mutant. In many aspects, NrsZ is an atypical sRNA in the bacterial panorama. To our knowledge, NrsZ is the first described sRNA induced by the NtrB/C. Moreover, its unique modular architecture and its processing in similar short SL molecules suggest that NrsZ belongs to a novel family of bacterial sRNAs. -- L'agent pathogène opportuniste et ubiquitaire Pseudomonas aeruginosa souche PAOl est une bactérie Gram négative versatile ayant l'extraordinaire capacité de coloniser différentes niches écologiques et de causer des infections sévères et persistantes chez l'être humain. Afin d'assurer une coordination optimale des gènes impliqués dans l'utilisation de différents nutriments, cette bactérie se sert de systèmes à deux composants tel que NtrB/C et CbrA/B afin de détecter la disponibilité des ressources nutritives, puis de réguler en conséquence l'expression des gènes impliqués dans leur importation et leur catabolisme. Le système NtrB/C régule l'utilisation des sources d'azote alors que le système CbrA/B est impliqué à la fois dans l'utilisation des sources de carbone et d'azote. Ces deux systèmes activent l'expression de leurs gènes-cibles de concert avec le facteur sigma alternatif RpoN. En outre, NtrB/C et CbrA/B régulent aussi le métabolisme secondaire, contrôlant notamment la production d'importants facteurs de virulence. En plus de toutes ces régulations génétiques fines ayant lieu au niveau transcriptionnel, P. aeruginosa est aussi capable de moduler son métabolisme en se servant de petits ARNs régulateurs non-codants (ARNncs), qui régulent l'expression génétique à un niveau post- transcriptionnel par divers mécanismes sophistiqués et contribuent à rendre particulièrement rapide l'adaptation physiologique de cette bactérie. Au cours de nos recherches sur de nouveaux ARNncs dépendant du facteur sigma RpoN et impliqués dans l'adaptation nutritionnelle de P. aeruginosa PAOl, nous avons découvert NrsZ (Nitrogen regulated sRNA), un ARNnc induit par la cascade NtrB/C-RpoN en condition de carence en azote. NrsZ a une architecture unique, composée de trois structures en tige- boucle (TB I, II et III) hautement similaires et séparées par des « espaceurs » ayant des séquences variables. De plus, cet ARNnc est clivé en petits fragments correspondant au trois molécules en tige-boucle, par un processus de clivage interne impliquant l'endoribonucléase RNase E. Concernant les fonctions de NrsZ chez P. aeruginosa PAOl, cet ARNnc est capable d'induire la motilité de type « swarming » et la production de biosurfactants, nommés rhamnolipides. Cette régulation est due à l'activation par NrsZ de l'expression de rhlA, un gène essentiel pour la motilité de type swarming et pour la production de rhamnolipides. Étonnamment, la structure TB I est capable d'assurer à elle seule la fonction régulatrice de NrsZ sur l'expression de rhlA, suggérant que ces molécules TBs sont les unités fonctionnelles de cet ARNnc modulaire. Cependant, le mécanisme moléculaire par lequel NrsZ active l'expression de rhlA demeure à ce jour incertain et est actuellement à l'étude. En plus, le réseau de régulations médiées par NrsZ a été étudié par une analyse de transcriptome qui a indiqué que de nombreux gènes impliqués dans le métabolisme primaire ou secondaire seraient régulés par NrsZ. Pour accentuer l'importance de NrsZ, nous avons étudié sa conservation dans d'autres espèces de Pseudomonas. Ainsi, nous avons démontré que NrsZ est conservé et exprimé en situation de carence d'azote par les souches Pseudomonas protegens Pf-5, Pseudomonas putida KT2442, Pseudomonas entomophila L48, Pseudomonas syringae pv. tomato DC3000, quatre espèces ayant des caractéristiques écologiques très différentes, suggérant que NrsZ joue un rôle important dans l'adaptation du genre Pseudomonas envers la carence en azote. Chez toutes les souches étudiées, les différents homologues de NrsZ présentent une architecture similaire faite de TBs conservées et d'espaceurs. Cependant, le nombre de TBs n'est pas identique et peut varier de une à six copies selon la souche. Les différentes versions de NrsZ sont clivées en petites molécules dans ces quatre souches, comme il a été observé chez P. aeruginosa PAOl. De plus, l'expression hétérologue des différentes variantes de NrsZ est capable de restaurer l'expression de rhlA, la motilité swarming et la production de rhamnolipides dans une souche de P. aeruginosa dont nrsZ a été inactivé. Par bien des aspects, NrsZ est un ARNnc atypique dans le monde bactérien. À notre connaissance, NrsZ est le premier ARNnc décrit comme étant régulé par le système NtrB/C. De plus, son unique architecture modulaire et son clivage en petites molécules similaires suggèrent que NrsZ appartient à une nouvelle famille d'ARNncs bactériens.
Resumo:
The frequent lack of microbiological documentation of infection by blood cultures (BC) has a major impact on clinical management of febrile neutropenic patients, especially in cases of unexplained persistent fever. We assessed the diagnostic utility of the LightCycler SeptiFast test (SF), a multiplex blood PCR, in febrile neutropenia. Blood for BC and SF was drawn at the onset of fever and every 3 days of persistent fever. SF results were compared with those of BC, clinical documentation of infection, and standard clinical, radiological, and microbiological criteria for invasive fungal infections (IFI). A total of 141 febrile neutropenic episodes in 86 hematological patients were studied: 44 (31%) microbiologically and 49 (35%) clinically documented infections and 48 (34%) unexplained fevers. At the onset of fever, BC detected 44 microorganisms in 35/141 (25%) episodes. Together, BC and SF identified 78 microorganisms in 61/141 (43%) episodes (P = 0.002 versus BC or SF alone): 12 were detected by BC and SF, 32 by BC only, and 34 by SF only. In 19/52 (37%) episodes of persistent fever, SF detected 28 new microorganisms (7 Gram-positive bacterial species, 15 Gram-negative bacterial species, and 6 fungal species [89% with a clinically documented site of infection]) whereas BC detected only 4 pathogens (8%) (P = 0.001). While BC did not detect fungi, SF identified 5 Candida spp. and 1 Aspergillus sp. in 5/7 probable or possible cases of IFI. Using SeptiFast PCR combined with blood cultures improves microbiological documentation in febrile neutropenia, especially when fever persists and invasive fungal infection is suspected. Technical adjustments may enhance the efficiency of this new molecular tool in this specific setting.
Resumo:
OBJECTIVES: To assess the in vitro susceptibility of Actinobaculum schaalii to 12 antimicrobial agents as well as to dissect the genetic basis of fluoroquinolone resistance. METHODS: Forty-eight human clinical isolates of A. schaalii collected in Switzerland and France were studied. Each isolate was identified by 16S rRNA sequencing. MICs of amoxicillin, ceftriaxone, gentamicin, vancomycin, clindamycin, linezolid, ciprofloxacin, levofloxacin, moxifloxacin, co-trimoxazole, nitrofurantoin and metronidazole were determined using the Etest method. Interpretation of results was made according to EUCAST clinical breakpoints. The quinolone-resistance-determining regions (QRDRs) of gyrA and parC genes were also identified and sequence analysis was performed for all 48 strains. RESULTS: All isolates were susceptible to amoxicillin, ceftriaxone, gentamicin, clindamycin (except three), vancomycin, linezolid and nitrofurantoin, whereas 100% and 85% were resistant to ciprofloxacin/metronidazole and co-trimoxazole, respectively. Greater than or equal to 90% of isolates were susceptible to the other tested fluoroquinolones, and only one strain was highly resistant to levofloxacin (MIC ?32 mg/L) and moxifloxacin (MIC 8 mg/L). All isolates that were susceptible or low-level resistant to levofloxacin/moxifloxacin (n?=?47) showed identical GyrA and ParC amino acid QRDR sequences. In contrast, the isolate exhibiting high-level resistance to levofloxacin and moxifloxacin possessed a unique mutation in GyrA, Ala83Val (Escherichia coli numbering), whereas no mutation was present in ParC. CONCLUSIONS: When an infection caused by A. schaalii is suspected, there is a risk of clinical failure by treating with ciprofloxacin or co-trimoxazole, and ?-lactams should be preferred. In addition, acquired resistance to fluoroquinolones more active against Gram-positive bacteria is possible.
Resumo:
Limited antimicrobial agents are available for the treatment of implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli. We compared the activities of fosfomycin, tigecycline, colistin, and gentamicin (alone and in combination) against a CTX-M15-producing strain of Escherichia coli (Bj HDE-1) in vitro and in a foreign-body infection model. The MIC and the minimal bactericidal concentration in logarithmic phase (MBC(log)) and stationary phase (MBC(stat)) were 0.12, 0.12, and 8 μg/ml for fosfomycin, 0.25, 32, and 32 μg/ml for tigecycline, 0.25, 0.5, and 2 μg/ml for colistin, and 2, 8, and 16 μg/ml for gentamicin, respectively. In time-kill studies, colistin showed concentration-dependent activity, but regrowth occurred after 24 h. Fosfomycin demonstrated rapid bactericidal activity at the MIC, and no regrowth occurred. Synergistic activity between fosfomycin and colistin in vitro was observed, with no detectable bacterial counts after 6 h. In animal studies, fosfomycin reduced planktonic counts by 4 log(10) CFU/ml, whereas in combination with colistin, tigecycline, or gentamicin, it reduced counts by >6 log(10) CFU/ml. Fosfomycin was the only single agent which was able to eradicate E. coli biofilms (cure rate, 17% of implanted, infected cages). In combination, colistin plus tigecycline (50%) and fosfomycin plus gentamicin (42%) cured significantly more infected cages than colistin plus gentamicin (33%) or fosfomycin plus tigecycline (25%) (P < 0.05). The combination of fosfomycin plus colistin showed the highest cure rate (67%), which was significantly better than that of fosfomycin alone (P < 0.05). In conclusion, the combination of fosfomycin plus colistin is a promising treatment option for implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli.
Resumo:
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies.
Resumo:
Despite improvements in health care, the incidence of infective endocarditis has not decreased over the past decades. This apparent paradox is explained by a progressive evolution in risk factors; while classic predisposing conditions such as rheumatic heart disease have been all but eradicated, new risk factors for infective endocarditis have emerged. These include intravenous drug use, sclerotic valve disease in elderly patients, use of prosthetic valves, and nosocomial disease. Newly identified pathogens, which are difficult to cultivate--eg, Bartonella spp and Tropheryma whipplei--are present in selected individuals, and resistant organisms are challenging conventional antimicrobial therapy. Keeping up with these changes depends on a comprehensive approach, allying understanding of the pathogenesis of disease with the development of new drugs for infective endocarditis. Infection by staphylococci and streptococci is being dissected at the molecular level. New ideas for antimicrobial agents are being developed. These novel insights should help redefine preventive and therapeutic strategies against infective endocarditis.
Resumo:
Deep sternal wound infection (DSWI) is a feared complication following cardiac surgery. This study describes clinical, microbiological, and treatment outcomes of DSWI and determines risk factors for complications. Of 55 patients with DSWI, 66% were male and mean age was 68.2years. Initial sternotomy was for coronary artery bypass graft in 49% of patients. Sternal debridement at mean 25.4±18.3days showed monomicrobial (94%), mainly Gram-positive infection. Secondary sternal wound infection (SSWI) occurred in 31% of patients, was mostly polymicrobial (71%), and was predominantly due to Gram-negative bacilli. Risk factors for SSWI were at least 1 revision surgery (odds ratio [OR] 4.8 [95% confidence interval {CI} 1.0-22.4], P=0.047), sternal closure by muscle flap (OR 4.6 [1.3-16.8], P=0.02), delayed sternal closure (mean 27 versus 14days, P=0.03), and use of vacuum-assisted closure device (100% versus 58%, P=0.008). Hospital stay was significantly longer in patients with SSWI (69days versus 48days, P=0.04).
Resumo:
At present, despite extensive laboratory investigations, most cases of porcine abortion remain without an etiological diagnosis. Due to a lack of recent data on the abortigenic effect of order Chlamydiales, 286 fetuses and their placentae of 113 abortion cases (1-5 fetuses per abortion case) were investigated by polymerase chain reaction (PCR) methods for family Chlamydiaceae and selected Chlamydia-like organisms such as Parachlamydia acanthamoebae and Waddlia chondrophila. In 0.35% of the cases (1/286 fetuses), the Chlamydiaceae real-time PCR was positive. In the Chlamydiaceae-positive fetus, Chlamydia abortus was detected by a commercial microarray and 16S ribosomal RNA PCR followed by sequencing. The positive fetus had a Porcine circovirus-2 coinfection. By the Parachlamydia real-time PCR, 3.5% (10/286 fetuses of 9 abortion cases) were questionable positive (threshold cycle values: 35.0-45.0). In 2 of these 10 cases, a confirmation by Chlamydiales-specific real-time PCR was possible. All samples tested negative by the Waddlia real-time PCR. It seems unlikely that Chlamydiaceae, Parachlamydia, and Waddlia play an important role as abortigenic agents in Swiss sows.
Resumo:
Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections.
Resumo:
Bovine abortion of unknown infectious aetiology still remains a major economic problem. In this study, we focused on a new possible abortigenic agent called Parachlamydia acanthamoebae. Retrospective samples (n=235) taken from late-term abortions in cattle were investigated by real-time diagnostic PCR for Chlamydiaceae and Parachlamydia spp., respectively. Histological sections of cases positive by real-time PCR for any Chlamydia-related agent were further examined by immunohistochemistry using specific antibodies. Chlamydophila abortus was detected only in three cases (1.3%) by real-time PCR and ArrayTube Microarray playing a less important role in bovine abortion compared to the situation in small ruminants in Switzerland. By real-time PCR as many as 43 of 235 (18.3%) cases turned out to be positive for Parachlamydia. The presence of Parachlamydia within placental lesions was confirmed in 35 cases (81.4%) by immunohistochemistry. The main histopathological feature in parachlamydial abortion was purulent to necrotizing placentitis (25/43). Parachlamydia should be considered as a new abortigenic agent in Swiss cattle. Since Parachlamydia may be involved in lower respiratory tract infections in humans, bovine abortion material should be handled with care given the possible zoonotic risk.
Resumo:
Chlamydophila abortus and Waddlia chondrophila cause abortion in ruminants. We investigated the role of Parachlamydia acanthamoebae in bovine abortion. Results of immunohistochemical analyses were positive in 30 (70%) of 43 placentas from which Chlamydia-like DNA was amplified, which supports the role of Parachlamydia spp. in bovine abortion.