120 resultados para G Protein-coupled Receptor
Resumo:
Morphogens of the Wnt protein family are the secreted lipoglycoprotein ligands which initiate several pathways heavily involved in the coordination of various developmental stages of organisms in the majority of animal species. Deregulation of these pathways in the adult leads to formation and sustaining of multiple types of cancer. The latter notion is reinforced by the fact that the very discovery of the first Wnt ligand was due to its role as the causative factor of carcinogenic transformation (Nusse and Varmus, 1982). Nowadays our knowledge on Wnt signaling has "moved with the times" and these pathways were identified to be often crucial for tumor formation, its interactions with the microenvironment, and promotion of the metastases (Huang and Du, 2008; Zerlin et al., 2008; Jessen, 2009). Thus the relevance of the pathway as the target for drug development has further increased in the light of modern paradigms of the complex cancer treatments which target also spreading and growth- promoting factors of tumors by specific and highly efficient substances (Pavet et al., 2010). Presently the field of the Wnt-targeting drug research is almost solely dominated by assays based on transcriptional activation induced by the signaling. This approach resulted in development of a number of promising substances (Lee et al., 2011). Despite its effectiveness, the method nevertheless suffers from several drawbacks. Among the major ones is the fact that this approach is prone to identify compounds targeting rather downstream effectors of the pathway, which are indiscriminately used by all the subtypes of the Wnt signaling. Additionally, proteins which are involved in several signaling cascades and not just the Wnt pathway turn out as targets of the new compounds. These issues increase risks of side effects due to off-target interactions and blockade of the pathway in healthy cells. In the present work we put forward a novel biochemical approach for drug development on the Wnt pathway. It targets Frizzleds (Fzs) - a family of 7-transmbembrane proteins which serve as receptors for Wnt ligands. They offer unique properties for the development of highly specific and effective drugs as they control all branches of the Wnt signaling. Recent advances in the understanding of the roles of heterotrimeric G proteins downstream from Fzs (Katanaev et al., 2005; Liu et al., 2005; Jernigan et al., 2010) suggest application of enzymatic properties of these effectors to monitor the receptor-mediated events. We have applied this knowledge in practice and established a specific and efficient method based on utilization of a novel high-throughput format of the GTP-binding assay to follow the activation of Fzs. This type of assay is a robust and well-established technology for the research and screenings on the GPCRs (Harrison and Traynor, 2003). The conventional method of detection involves the radioactively labeled non-hydrolysable GTP analog [35S]GTPyS. Its application in the large-scale screenings is however problematic which promoted development of the novel non-radioactive GTP analog GTP-Eu. The new molecule employs phenomenon of the time-resolved fluorescence to provide sensitivity comparable to the conventional radioactive substance. Initially GTP-Eu was tested only in one of many possible types of GTP-binding assays (Frang et al., 2003). In the present work we expand these limits by demonstrating the general comparability of the novel label with the radioactive method in various types of assays. We provide a biochemical characterization of GTP-Eu interactions with heterotrimeric and small GTPases and a comparative analysis of the behavior of the new label in the assays involving heterotrimeric G protein effectors. These developments in the GTP-binding assay were then applied to monitor G protein activation by the Fz receptors. The data obtained in mammalian cultured cell lines provides for the first time an unambiguous biochemical proof for direct coupling of Fzs with G proteins. The specificity of this interaction has been confirmed by the experiments with the antagonists of Fz and by the pertussis toxin-mediated deactivation. Additionally we have identified the specificity of Wnt3a towards several members of the Fz family and analyzed the properties of human Fz-1 which was found to be the receptor coupled to the Gi/o family of G proteins. Another process playing significant role in the functioning of every GPCR is endocytosis. This phenomenon can also be employed for drug screenings on GPCRs (Bickle, 2010). In the present work we have demonstrated that Drosophila Fz receptors are involved in an unusual for many GPCRs manifestation of the receptor-mediated internalization. Through combination of biochemical approaches and studies on Drosophila as the model organism we have shown that direct interactions of the Fzs and the α-subunit of the heterotrimeric G protein Go with the small GTPase Rab5 regulate internalization of the receptor in early endosomes. We provide data uncovering the decisive role of this self-promoted endocytosis in formation of a proper signaling output in the canonical as well as planar cell polarity (PCP) pathways regulated by Fz. The results of this work thus establish a platform for the high-throughput screening to identify substances active in the cancer-related Wnt pathways. This methodology has been adjusted and applied to provide the important insights in Fz functioning and will be instrumental for further investigations on the Wnt-mediated pathways.
Resumo:
The antidiuretic effect of vasopressin is mediated by V2 receptors (V2R) that are located in kidney connecting tubules and collecting ducts. This study provides evidence that V2R signaling is negatively regulated by regulator of G protein signaling 2 (RGS2), a member of the family of RGS proteins. This study demonstrates that (1) RGS2 expression in the kidney is restricted to the vasopressin-sensitive part of the nephron (thick ascending limb, connecting tubule, and collecting duct); (2) expression of RGS2 is rapidly upregulated by vasopressin; (3) the vasopressin-dependent accumulation of cAMP, the principal messenger of V2R signaling, is significantly higher in collecting ducts that are microdissected from the RGS2(-/-) mice compared with their wild-type littermates; and (4) analysis of urine output of mice that were exposed to water restriction followed by acute water loading revealed that RGS2(-/-) mice exhibit an increased renal responsiveness to vasopressin. It is proposed that RGS2 is involved in negative feedback regulation of V2R signaling.
Resumo:
PURPOSE: To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65⁻/⁻ mouse model of Leber congenital amaurosis. METHODS: We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5⁻/⁻/Rpe65⁻/⁻). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin α subunit (Gnat1), and cone transducin α subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. RESULTS: No differences in the progression of retinal degeneration were observed between the Rpe65⁻/⁻ and Cspg5⁻/⁻/Rpe65⁻/⁻ mice. No retinal phenotype was detected in the late postnatal and adult Cspg5⁻/⁻ mice, when compared to the wild-type mice. CONCLUSIONS: Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65⁻/⁻ mice, no protective effect or any involvement of Cspg5 in disease progression was identified.
Resumo:
Viral subversion of apoptosis regulation plays an important role in the outcome of host/virus interactions. Although human cytomegalovirus (HCMV) encodes several immediate early (IE) antiapoptotic proteins (IE1, IE2, vMIA and vICA), no proapoptotic HCMV protein has yet been identified. Here we show that US28, a functional IE HCMV-encoded chemokine receptor, which may be involved in both viral dissemination and immune evasion, constitutively induces apoptosis in several cell types. In contrast, none of nine human cellular chemokine receptors, belonging to three different subfamilies, induced any significant level of apoptosis. US28-induced cell death involves caspase 10 and caspase 8 activation, but does not depend on the engagement of cell-surface death receptors of the tumour necrosis factor receptor/CD95 family. US28 cell-death induction is prevented by coexpression of C-FLIP, a protein that inhibits Fas-associated death domain protein (FADD)-mediated activation of caspase 10 and caspase 8, and by coexpression of the HCMV antiapoptotic protein IE1. The use of US28 mutants indicated that the DRY sequence of its third transmenbrane domain, required for constitutive G-protein signalling, and the US28 intracellular terminal domain required for constitutive US28 endocytosis, are each partially required for cell-death induction. Thus, in HCMV-infected cells, US28 may function either as a chemokine receptor, a phospholipase C activator, or a proapoptotic factor, depending on expression levels of HCMV and/or cellular antiapoptotic proteins.
Resumo:
The aim of the present work was to study whole body protein synthesis and breakdown, as well as energy metabolism, in very low birth weight premature infants (less than 1500 g) during their rapid growth phase. Ten very low birth weight infants were studied during their first and second months of life. They received a mean energy intake of 114 kcal/kg X day and 3 g protein/kg X day as breast milk or milk formula. The average weight gain was 15 g/kg X day. The apparent energy digestibility was 88%, i.e. 99 kcal/kg X day. Their resting postprandial energy expenditure was 58 kcal/kg X day, indicating that 41 kcal/kg X day was retained. The apparent protein digestibility was 89%, i.e. 2.65 g/kg X day. Their rate of protein oxidation was 0.88 g/kg X day so that protein retention was 1.76 g/kg X day. There was a linear relationship between N retention and N intake (r = 0.78, p less than 0.001). The slope of the regression line indicates a net efficiency of N utilization of 67%. Estimates of body composition from the energy balance, coupled with N balance method, showed that 25% of the gain was fat and 75% was lean tissue. Whole body protein synthesis and breakdown were determined using repeated oral administration of 15N glycine for 60-72 h, and 15N enrichment in urinary urea was measured. Protein synthesis averaged 11.2 g/kg X day and protein breakdown 9.4 g/kg X day. Muscular protein breakdown, as estimated by 3-methylhistidine excretion, contributed to 12% of the total protein breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Htr1a is one of the most widespread serotonin receptor across the brain, strongly expressed in CAI region of hippocampus. Our laboratory studies the phenotypic alteration in 5HTla- deficient mice (Htr1aK0), characterized an abnormal anxious-like behavior. Our aim is to evaluate the regulation of this cognitive process by understanding the circuitry involved. This phenotype sets up early during development and has durable effect in adulthood. Our laboratory showed that adult Htr1aK0 male mice displaying exuberant dendritic growth of oblique dendrites in a specific layer of a CAI pyramidal neurons, the stratum radiatum. Application of drugs in organotypic cultures and by in vivo injections revealed that GluN2B, a subunit of NMDA receptor highly expressed during development, is responsible for this dendritic exuberance. Immunohistochemistry highlighted in particular a synaptic enrichment of GluN2B in stratum radiatum of Htr1aK0 CAI pyramidal neurons at puberty. Finally, original analysis of Htr1aK0 mouse behavior showed a different response to anxiety between male and female. Htr1a activation down-regulates the CaMKII activity in the CAI pyramidal neurons. CaMKII directly favors the membrane conductance and stability of GluN2B at the synapse. In the context of the Htr1aK0 mouse, GluN2B is the final common pathway of our phenotype. This subunit is well known to regulate the threshold of LTD/LTP and the dendritogenesis during development. In my thesis, I establish a link between the gender differences in the morphology and the physiology in the Htr1aK0 mice during development to understand how these characteristics shape the circuit with prominent cognitive impacts in adulthood. My study highlighted that during development, Htr1aK0 male mice show a constant increase of the dendritic growth of oblique dendrites from early ages until adulthood associated with an increased physiological impact of altered GluN2A/GluN2B ratio. Whereas during puberty, synaptic contribution of GluN2B to NMDA response is higher in Htr1aK0 compared to WT male mice, this ratio comes back to normal values towards adulthood. However, this recovery of the ratio of GluN2A/GluN2B located at the synaptic level is concomitant with the lateral diffusion of excess GluN2B subunits, leading to extrasynaptic enrichment. The main impact was a lowering of the LTP threshold characterized by strong increased potentiation of synaptic strength after 5 Hz low frequency stimulation. Moreover, the extrasynaptic GluN2B overexpression leads to a shift of the maturation phase switch explaining the exuberant morphology. However, Htr1aK0 females characterized during the 3 first weeks of development by an increase of the dendritic growth of oblique dendrites showed starting at puberty that the dendrite arborization returns progressively to WT values. The physiological impact of GluN2B was investigated and directly linked to this morphology, since Htr1aK0 female mice does not show alteration of the synaptic strength during development. These observations show a compensation occurring in Htr1aK0 female, responsible for a rescue of the phenotype morphologically, physiologically and to be tested behaviorally. We highlighted then the biological processes underlying this compensation. During development, sexual hormones such as testosterone and estrogen are responsible to induce sexual differentiation of specific brain regions. I demonstrated that estrogen, but not testosterone, was able to reduce both in vitro and in vivo the dendritic arborization early during development, through activation of GPER-1, a G-coupled protein estrogen receptor, which phenocopy the activation of Htr1a by reducing GluN2B conductance and stability. I then identified a pathway, parallel to Htr1a, able to regulate GluN2B and responsible for the morphological and physiological phenotype in Htr1aK0 female mice. The specific rise of estrogen occurring at puberty in female is responsible for the compensation observed and induces a late rescue of the Htr1aK0 phenotype by activation GPER-1. -- Htr1a est un des récepteurs à la sérotonine les plus répandus dans le cerveau, fortement exprimé dans la région CAI de l'hippocampe. Notre laboratoire étudie les altérations phénotypiques de souris déficientes pour ce récepteur (Htr1aK0), caractérisées par un comportement avec des traits anxieux. Notre objectif est d'évaluer la régulation de ces processus cognitifs en comprenant les connexions nerveuses impliquées. Ce phénotype se met en place tôt au cours du développement et présente un effet durable à l'âge adulte. Notre laboratoire a montré que les souris Htr1aK0 mâles adultes se caractérisent par une croissance exubérante des dendrites obliques dans une couche spécifique des neurones pyramidaux du CAI, le stratum radiatum. L'application de drogues sur cultures organotypiques et par injections in vivo ont révélé que GluN2B, une sous-unité du récepteur NMDA fortement exprimée au cours du développement, est responsable de cette exubérance dendritique. Des expériences d'immunohistochimie ont notamment mis en évidence un enrichissement synaptique de GluN2B durant la puberté dans le stratum radiatum des neurones de la région CAI des souris Htr1aK0. Finalement, l'analyse originale du comportement des souris Htr1aK0 a montré une différence de réponse à l'anxiété entre mâles et femelles. L'activation de Htr1a diminue l'activité de la CaMKII dans les neurones pyramidaux du CAI. La CaMKII favorise directement la conductance et la stabilité de la sous-unité GluN2B à la synapse. Dans le contexte de la souris Htr1aK0, GluN2B est le « médiateur » de notre phénotype. Cette sous-unité est particulièrement connue pour réguler le seuil de LTD-LTP ainsi que la dendritogénèse durant le développement. Dans ma thèse, j'ai établi le lien entre les différences dépendant du genre dans la morphologie et physiologie des souris Htr1aK0 au cours du développement pour comprendre comment ces caractéristiques modulent le circuit accompagnés d'impacts cognitifs visibles à l'âge adulte. Mon étude a mis en évidence que durant le développement, les souris mâles Htr1aK0 montrent une constante augmentation de la croissance des dendrites obliques entre les premières semaines et l'âge adulte associée à une augmentation de l'impact physiologique du ratio GluN2A/GluN2B altéré. Alors que durant la puberté, la contribution synaptique de GluN2B à la réponse NMDA est plus haute chez la souris mâle Htr1aK0 que le WT, ce ratio revient à des valeurs normales à l'âge adulte. Cependant, cette récupération de l'expression du récepteur au niveau synaptique est concomitante avec la diffusion des sous-unités GluN2B excédantes, amenant alors à un enrichissement extrasynaptique. Le principal impact est une diminution du seuil de la LTP caractérisée par une forte potentiation de la plasticité après une stimulation basse fréquence à 5 Hz. De plus, la surexpression des GluN2B extrasynaptiques conduit à un décalage de la bascule à la phase de maturation, expliquant la morphologie dendritique exubérante. Cependant, les femelles Htr1aK0 initialement caractérisées pendant les 3 premières semaines du développement par une augmentation de la croissance des dendrites obliques montrent à partir de la puberté que cette arborisation dendritique retourne à des valeurs WT. L'impact physiologique de GLuN2B a été investigué et mis en lien avec cette morphologie, étant donné que les femelles Htr1aK0 ne montrent pas d'altération de la plasticité durant le développement. Ces observations montrent une compensation se produisant chez la femelle Htr1aK0, responsable d'une récupération du phénotype morphologique, physiologique et peut-être comportemental. Nous avons souligné les processus biologiques sous-jacent à cette compensation. Au cours du développement, les hormones sexuelles telles que la testostérone et l'estrogène sont responsables de la différentiation sexuelle de régions du cerveau spécifiques. J'ai démontré que l'estrogène, mais pas la testostérone, était capable de réduire in vitro et in vivo l'arborisation dendritique tôt dans le développement au travers de l'activation du récepteur GPER-1, un récepteur aux estrogènes couplés à un protéine G, qui phénocopie l'activation de Htr1a en réduisant la conductance et la stabilité de GluN2B à la membrane. J'ai identifié une voie de signalisation parallèle à celle de Htr1a, capable de réguler GluN2B et responsable du phénotype morphologique et physiologique de la souris femelle Htr1aK0. La montée spécifique d'estrogène se déroulant à la puberté chez la femelle est responsable de cette compensation et implique une récupération tardive du phénotype Htr1aK0 par l'activation de GPER-1.
Resumo:
Body composition, resting energy expenditure (REE), and whole body protein metabolism were studied in 26 young and 28 elderly Gambian men matched for body mass index during the dry season in a rural village in The Gambia. REE was measured by indirect calorimetry (hood system) in the fasting state and after five successive meals. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotopic enrichment of urinary ammonia over a period of 12 h after a single oral dose of [15N]glycine. Expressed in absolute value, REE was significantly lower in the elderly compared with the young group (3.21 +/- 0.07 vs. 4.04 +/- 0.07 kJ/min, P < 0.001) and when adjusted to body weight (3.29 +/- 0.05 vs. 3.96 +/- 0.05 kJ/min, P < 0.0001) and fat-free mass (FFM; 3.38 +/- 0.01 vs. 3.87 +/- 0.01 kJ/min, P < 0.0001). The rate of protein synthesis averaged 207 +/- 13 g protein/day in the elderly and 230 +/- 13 g protein/day in the young group, whereas protein breakdown averaged 184 +/- 13 g protein/day in the elderly and 203 +/- 13 g protein/day in the young group (nonsignificant). When values were adjusted for body weight or FFM, they did not reveal any difference between the two groups. It is concluded that the reduced REE adjusted for body composition observed in elderly Gambian men is not explained by a decrease in protein turnover.
Resumo:
The aim of the present study was to compare, under the same nursing conditions, the energy-nitrogen balance and the protein turnover in small for gestational age (SGA) and appropriate for gestational age (AGA) low birthweight infants. We compared 8 SGA's (mean +/- s.d.: gestational age 35 +/- 2 weeks, birthweight 1520 +/- 330 g) to 11 AGA premature infants (32 +/- 2 weeks, birthweight 1560 +/- 240 g). When their rate of weight gain was above 15 g/kg/d (17.6 +/- 3.0 and 18.2 +/- 2.6 g/kg/d, mean postnatal age 18 +/- 10 and 20 +/- 9 d respectively) they were studied with respect to their metabolizable energy intake, their energy expenditure, their energy and protein gain and their protein turnover. Energy balance was assessed by the difference between metabolizable energy and energy expenditure as measured by indirect calorimetry. Protein gain was calculated from the amount of retained nitrogen. Protein turnover was estimated by a stable isotope enrichment technique using repeated nasogastric administration of 15N-glycine for 72 h. Although there was no difference in their metabolizable energy intakes (110 +/- 12 versus 108 +/- 11 kcal/kg/d), SGA's had a higher rate of resting energy expenditure (64 +/- 8 versus 57 +/- 8 kcal/kg/d, P less than 0.05). Protein gain and composition of weight gain was very similar in both groups (2.0 +/- 0.4 versus 2.1 +/- 0.4 g protein/kg/d; 3.5 +/- 1.1 versus 3.3 +/- 1.4 g fat/kg/d in SGA's and AGA's respectively). However, the rate of protein synthesis was significantly lower in SGA's (7.7 +/- 1.6 g/kg/d) as compared to AGA's (9.7 +/- 2.8 g/kg/d; P less than 0.05). It is concluded that SGA's have a more efficient protein gain/protein synthesis ratio since for the same weight and protein gains, SGA's show a 20 per cent slower protein turnover. They might therefore tolerate slightly higher protein intakes. Postconceptional age seems to be an important factor in the regulation of protein turnover.
Resumo:
In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.
Resumo:
In addition to the ubiquitous apical-basal polarity, epithelial cells are often polarized within the plane of the tissue - the phenomenon known as planar cell polarity (PCP). In Drosophila, manifestations of PCP are visible in the eye, wing, and cuticle. Several components of the PCP signaling have been characterized in flies and vertebrates, including the heterotrimeric Go protein. However, Go signaling partners in PCP remain largely unknown. Using a genetic screen we uncover Kermit, previously implicated in G protein and PCP signaling, as a novel binding partner of Go. Through pull-down and genetic interaction studies, we find that Kermit interacts with Go and another PCP component Vang, known to undergo intracellular relocalization during PCP establishment. We further demonstrate that the activity of Kermit in PCP differentially relies on the motor proteins: the microtubule-based dynein and kinesin motors and the actin-based myosin VI. Our results place Kermit as a potential transducer of Go, linking Vang with motor proteins for its delivery to dedicated cellular compartments during PCP establishment.
Resumo:
Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target of Go signaling required for NMJ formation. Moreover, the Go-ankyrin interaction is conserved in the mammalian neurite outgrowth pathway. Without ankyrins, a major switch in the Go-induced neuronal cytoskeleton program is observed, from microtubule-dependent neurite outgrowth to actin-dependent lamellopodial induction. These findings describe a novel mechanism regulating the microtubule cytoskeleton in the nervous system. Our work in Drosophila and mammalian cells suggests that this mechanism might be generally applicable in nervous system development and function.
Resumo:
Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.
Resumo:
Isolated primary human cells from different donors vary in their permissiveness-the ability of cells to be infected and sustain the replication of human immunodeficiency virus type 1 (HIV-1). We used replicating HIV-1 and single-cycle lentivirus vectors in a population approach to identify polymorphic steps during viral replication. We found that phytohemagglutinin-stimulated CD4(+) CD45RO(+) CD57(-) T cells from healthy blood donors (n = 128) exhibited a 5.2-log-unit range in virus production. For 20 selected donors representing the spectrum of CD4 T-cell permissiveness, we could attribute up to 42% of the total variance in virus production to entry factors and 48% to postentry steps. Efficacy at key intracellular steps of the replicative cycle (reverse transcription, integration, transcription and splicing, translation, and budding and release) varied from 0.71 to 1.45 log units among donors. However, interindividual differences in transcription efficiency alone accounted for 64 to 83% of the total variance in virus production that was attributable to postentry factors. While vesicular stomatitis virus G protein-mediated fusion was more efficacious than CCR5/CD4 entry, the latter resulted in greater transcriptional activity per proviral copy. The phenotype of provirus transcription was stable over time, indicating that it represents a genetic trait.
Resumo:
We have reported that ingesting a meal immediately after exercise increased skeletal muscle accretion and less adipose tissue accumulation in rats employed in a 10 week resistance exercise program. We hypothesized that a possible increase in the resting metabolic rate (RMR) as a result of the larger skeletal muscle mass might be responsible for the less adipose deposition. Therefore, the effect of the timing of a protein supplement after resistance exercise on body composition and the RMR was investigated in 17 slightly overweight men. The subjects participated in a 12-week weight reduction program consisting of mild energy restriction (17% energy intake reduction) and a light resistance exercise using a pair of dumbbells (3-5 kg). The subjects were assigned to two groups. Group S ingested a protein supplement (10 g protein, 7 g carbohydrate, 3.3 g fat and one-third of recommended daily allowance (RDA) of vitamins and minerals) immediately after exercise. Group C did not ingest the supplement. Daily intake of both energy and protein was equal between the two groups and the protein intake met the RDA. After 12 weeks, the bodyweight, skinfold thickness, girth of waist and hip and percentage bodyfat significantly decreased in the both groups, however, no significant differences were observed between the groups. The fat-free mass significantly decreased in C, whereas its decrease in S was not significant. The RMR and post-meal total energy output significantly increased in S, while these variables did not change in C. In addition, the urinary nitrogen excretion tended to increase in C but not in S. These results suggest that the RMR increase observed in S might be associated with an increase in body protein synthesis.
Resumo:
T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.