93 resultados para Endurance exercise training


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: This study aims to investigate physical performance and hematological changes in 32 elite male team-sport players after 14 d of "live high-train low" (LHTL) training in normobaric hypoxia (≥14 h·d at 2800-3000 m) combined with repeated-sprint training (six sessions of four sets of 5 × 5-s sprints with 25 s of passive recovery) either in normobaric hypoxia at 3000 m (LHTL + RSH, namely, LHTLH; n = 11) or in normoxia (LHTL + RSN, namely, LHTL; n = 12) compared with controlled "live low-train low" (LLTL; n = 9) training. METHODS: Before (Pre), immediately after (Post-1), and 3 wk after (Post-2) the intervention, hemoglobin mass (Hbmass) was measured in duplicate [optimized carbon monoxide (CO) rebreathing method], and vertical jump, repeated-sprint (8 × 20 m-20 s recovery), and Yo-Yo Intermittent Recovery level 2 (YYIR2) performances were tested. RESULTS: Both hypoxic groups similarly increased their Hbmass at Post-1 and Post-2 in reference to Pre (LHTLH: +4.0%, P < 0.001 and +2.7%, P < 0.01; LHTL: +3.0% and +3.0%, both P < 0.001), whereas no change occurred in LLTL. Compared with Pre, YYIR2 performance increased by ∼21% at Post-1 (P < 0.01) and by ∼45% at Post-2 (P < 0.001), with no difference between the two intervention groups (vs no change in LLTL). From Pre to Post-1, cumulated sprint time decreased in LHTLH (-3.6%, P < 0.001) and LHTL (-1.9%, P < 0.01), but not in LLTL (-0.7%), and remained significantly reduced at Post-2 (-3.5%, P < 0.001) in LHTLH only. Vertical jump performance did not change. CONCLUSIONS: "Live high-train low and high" hypoxic training interspersed with repeated sprints in hypoxia for 14 d (in season) increases the Hbmass, YYIR2 performance, and repeated-sprint ability of elite field team-sport players, with benefits lasting for at least 3 wk postintervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To compare the effects of two different 2-week-long training modalities [continuous at the intensity eliciting the maximal fat oxidation (Fatmax ) versus high-intensity interval training (HIIT)] in men with class II and III obesity. METHODS: Nineteen men with obesity (BMI ≥ 35 kg(.) m(-2) ) were assigned to Fatmax group (GFatmax ) or to HIIT group (GHIIT ). Both groups performed eight cycling sessions matched for mechanical work. Aerobic fitness and fat oxidation rates (FORs) during exercise were assessed prior and following the training. Blood samples were drawn to determine hormones and plasma metabolites levels. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA2-IR). RESULTS: Aerobic fitness and FORs during exercise were significantly increased in both groups after training (P ≤ 0.001). HOMA2-IR was significantly reduced only for GFatmax (P ≤ 0.001). Resting non-esterified fatty acids (NEFA) and insulin decreased significantly only in GFatmax (P ≤ 0.002). CONCLUSIONS: Two weeks of HIIT and Fatmax training are effective for the improvement of aerobic fitness and FORs during exercise in these classes of obesity. The decreased levels of resting NEFA only in GFatmax may be involved in the decreased insulin resistance only in this group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of intramyocellular lipids (IMCLs) on endurance performance with high skeletal muscle glycogen availability remains unclear. Previous work has shown that a lipid-supplemented high-carbohydrate (CHO) diet increases IMCLs while permitting normal glycogen loading. The aim of this study was to assess the effect of fat supplementation on fat oxidation (Fox) and endurance performance. Twenty-two trained male cyclists performed 2 simulated time trials (TT) in a randomized crossover design. Subjects cycled at ∼53% maximal voluntary external power for 2 h and then followed 1 of 2 diets for 2.5 days: a high-CHO low-fat (HC) diet, consisting of CHO 7.4 g·kg(-1)·day(-1) and fat 0.5 g·kg(-1)·day(-1); or a high-CHO fat-supplemented (HCF) diet, which was a replication of the HC diet with ∼240 g surplus fat (30% saturation) distributed over the last 4 meals of the diet period. On trial morning, fasting blood was sampled and Fox was measured during an incremental exercise; a ∼1-h TT followed. Breath volatile compounds (VOCs) were measured at 3 time points. Mental fatigue, measured as reaction time, was evaluated during the TT. Plasma free fatty acid concentration was 50% lower after the HCF diet (p < 0.0001), and breath acetone was reduced (p < 0.05) "at rest". Fox peaked (∼0.35 g·kg(-1)) at ∼42% peak oxygen consumption, and was not influenced by diet. Performance was not significantly different between the HCF and HC diets (3369 ± 46 s vs 3398 ± 48 s; p = 0.39), nor were reaction times to the attention task and VOCs (p = NS for both). In conclusion, the short-term intake of a lipid supplement in combination with a glycogen-loading diet designed to boost intramyocellular lipids while avoiding fat adaptation did not alter substrate oxidation during exercise or 1-hour cycling performance.