294 resultados para Encoding
Resumo:
Replacement of the hyperimmune anti-Rhesus (Rh) D immunoglobulin, currently used to prevent haemolytic disease of the newborn, by fully recombinant human anti-RhD antibodies would solve the current logistic problems associated with supply and demand. The combination of phage display repertoire cloning with precise selection procedures enables isolation of specific genes that can then be inserted into mammalian expression systems allowing production of large quantities of recombinant human proteins. With the aim of selecting high-affinity anti-RhD antibodies, two human Fab libraries were constructed from a hyperimmune donor. Use of a new phage panning procedure involving bromelin-treated red blood cells enabled the isolation of two high-affinity Fab-expressing phage clones. LD-6-3 and LD-6-33, specific for RhD. These showed a novel reaction pattern by recognizing the D variants D(III), D(IVa), D(IVb), D(Va), D(VI) types I and II. D(VII), Rh33 and DFR. Full-length immunoglobulin molecules were constructed by cloning the variable regions into expression vectors containing genomic DNA encoding the immunoglobulin constant regions. We describe the first, stable, suspension growth-adapted Chinese hamster ovary (CHO) cell line producing a high affinity recombinant human IgG1 anti-RhD antibody adapted to pilot-scale production. Evaluation of the Fc region of this recombinant antibody by either chemiluminescence or antibody-dependent cell cytotoxicity (ADCC) assays demonstrated macrophage activation and lysis of red blood cells by human lymphocytes. A consistent source of recombinant human anti-RhD immunoglobulin produced by CHO cells is expected to meet the stringent safety and regulatory requirements for prophylactic application.
Resumo:
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterized by progressive degeneration of upper and lower motor neurons. It is mostly sporadic, but about 2% of cases are associated with mutations in the gene encoding the enzyme superoxide dismutase 1 (SOD1). A major constraint to the comprehension of the pathogenesis of ALS has been long represented by the conviction that this disorder selectively affects motor neurons in a cell-autonomous manner. However, the failure to identify the events underlying the neurodegenerative process and the increased knowledge of the complex cellular interactions necessary for the correct functioning of the CNS has recently focused the attention on the contribution to neurodegeneration of glial cells, including astrocytes. Astrocytes can hurt motor neurons directly by secreting neurotoxic factors, but they can also play a deleterious role indirectly by losing functions that are supportive for neurons. Recently, we reported that a subpopulation of astrocytes degenerates in the spinal cord of hSOD1G93A transgenic mouse model of ALS. Mechanistic studies in cultured astrocytes revealed that such effect is mediated by the excitatory amino acid glutamate.On the bsis of these observations, we next used the established cell culture model as a tool to screen the glioprotective effect of innovative drugs, namely cell-permeable therapeutics. These consist of peptidic effector moieties coupled to the selective intracellular peptide transporter TAT protein. We initially validated the usefulness of these molecules demonstrating that a control fluorescent peptide enters astrocytes in culture and is retained within the cells up to 24-48 h, according to the timing of our cytotoxicity experiments. We then tested the impact of specific intracellular peptides with antiapoptotic properties on glutamate-treated hSOD1G93A- expressing astrocytes and we identified one molecule that protects the cells from death. Chronic treatment of ALS mice with this peptide had a positive impact on the outcome of the disease.
Resumo:
A glucocorticoid-responsive vector is described which allows for the highly inducible expression of complementary DNAs (cDNAs) in stably transfected mammalian cell lines. This vector, pLK-neo, composed of a variant mouse mammary tumor virus long terminal repeat promoter, containing a hormone regulatory element, a Geneticin resistance-encoding gene in a simian virus 40 transcription unit, and a polylinker insertion site for heterologous cDNAs, was used to express the polymeric immunoglobulin (poly-Ig) receptor and the thymocyte marker, Thy-1, in Madin-Darby canine kidney (MDCK) cells and in murine fibroblast L cells. A high level of poly-Ig receptor or Thy-1 mRNA accumulation was observed in MDCK cells in response to dexamethasone with a parallel ten- to 200-fold increase in protein synthesis depending on the recombinant protein and the transfected cell clone.
Resumo:
OBJECTIVE: Familial cold urticaria (FCU) and Muckle-Wells syndrome (MWS) are dominantly inherited autoinflammatory disorders that cause rashes, fever, arthralgia, and in some subjects, AA amyloidosis, and have been mapped to chromosome 1q44. Sensorineural deafness in MWS, and provocation of symptoms by cold in FCU, are distinctive features. This study was undertaken to characterize the genetic basis of FCU, MWS, and an overlapping disorder in French Canadian, British, and Indian families, respectively. METHODS: Mutations in the candidate gene NALP3, which has also been named CIAS1 and PYPAF1, were sought in the study families, in a British/Spanish patient with apparent sporadic MWS, and in matched population controls. Identified variants were sought in 50 European subjects with uncharacterized, apparently sporadic periodic fever syndromes, 48 subjects with rheumatoid arthritis (RA), and 19 subjects with juvenile idiopathic arthritis (JIA). RESULTS: Point mutations, encoding putative protein variants R262W and L307P, were present in all affected members of the Indian and French Canadian families, respectively, but not in controls. The R262W variant was also present in the subject with sporadic MWS. The V200M variant was present in all affected members of the British family with MWS, in 2 of the 50 subjects with uncharacterized periodic fevers, and in 1 of 130 Caucasian and 2 of 48 Indian healthy controls. No mutations were identified among the subjects with RA or JIA. CONCLUSION: These findings confirm that mutations in the NALP3/CIAS1/PYPAF1 gene are associated with FCU and MWS, and that disease severity and clinical features may differ substantially within and between families. Analysis of this gene will improve classification of patients with inherited or apparently sporadic periodic fever syndromes.
Resumo:
The discovery of innate immune genes, such as those encoding Toll-like receptors (TLRs), nucleotide-binding oligomerisation domain-like receptors (NLRs), and related signal-transducing molecules, has led to a substantial improvement of our understanding of innate immunity. Recent immunogenetic studies have associated polymorphisms of the genes encoding TLRs, NLRs, and key signal-transducing molecules, such as interleukin-1 receptor-associated kinase 4 (IRAK4), with increased susceptibility to, or outcome of, infectious diseases. With the availability of high-throughput genotyping techniques, it is becoming increasingly evident that analyses of genetic polymorphisms of innate immune genes will further improve our knowledge of the host antimicrobial defence response and help in identifying individuals who are at increased risk of life-threatening infections. This is likely to open new perspectives for the development of diagnostic, predictive, and preventive management strategies to combat infectious diseases.
Resumo:
The ribonucleotide reductase gene tandem bnrdE/bnrdF in SPbeta-related prophages of different Bacillus spp. isolates presents different configurations of intervening sequences, comprising one to three of six non-homologous splicing elements. Insertion sites of group I introns and intein DNA are clustered in three relatively short segments encoding functionally important domains of the ribonucleotide reductase. Comparison of the bnrdE homologs reveals mutual exclusion of a group I intron and an intein coding sequence flanking the codon that specifies a conserved cysteine. In vivo splicing was demonstrated for all introns. However, for two of them a part of the mRNA precursor molecules remains unspliced. Intergenic bnrdE-bnrdF regions are unexpectedly long, comprising between 238 and 541 nt. The longest encodes a putative polypeptide related to HNH homing endonucleases.
Resumo:
The siderophore pyochelin of Pseudomonas aeruginosa is derived from one molecule of salicylate and two molecules of cysteine. Two cotranscribed genes, pchEF, encoding peptide synthetases have been identified and characterized. pchE was required for the conversion of salicylate to dihydroaeruginoate (Dha), the condensation product of salicylate and one cysteine residue and pchF was essential for the synthesis of pyochelin from Dha. The deduced PchE (156 kDa) and PchF (197 kDa) proteins had adenylation, thiolation and condensation/cyclization motifs arranged as modules which are typical of those peptide synthetases forming thiazoline rings. The pchEF genes were coregulated with the pchDCBA operon, which provides enzymes for the synthesis (PchBA) and activation (PchD) of salicylate as well as a putative thioesterase (PchC). Expression of a translational pchE'-'lacZ fusion was strictly dependent on the PchR regulator and was induced by extracellular pyochelin, the end product of the pathway. Iron replete conditions led to Fur (ferric uptake regulator)-dependent repression of the pchE'-'lacZ fusion. A translational pchD'-'lacZ fusion was also positively regulated by PchR and pyochelin and repressed by Fur and iron. Thus, autoinduction by pyochelin (or ferric pyochelin) and repression by iron ensure a sensitive control of the pyochelin pathway in P. aeruginosa.
Resumo:
The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.
Resumo:
In the semantic analysis of tenses, the term event is frequently used. For example, following REICHENBACH (1947, 288), many studies mention three "points", within which (E) represents the "point of the event". Besides, like MARTIN (1985, 25), it is commonly considered -often implicitly- that "the duration of the utterance can [...] ideally be reduced to an instant t 0 [i.e. a point], [...] since within the utterance, truth conditions remain unaltered". However, events as well as utterances take time (cf. the use of "intervals " by GOSSELIN 1996). Here, I will analyze Present tense utterances such as "le ballon franchit la ligne" (the ball crosses/is crossing the line), for which the described event ("achievement" for VENDLER 1957; "réalisation instantanée" for VETTERS 1996) is shorter than the utterance that mentions it. I will show why the telic character (GAREY 1957) of achievements -unlike the other types of processes- makes it difficult to express an event contemporary to speech time since, against MARTIN's (1985, 25) idealization, truth conditions vary throughout the utterance. Taking encoding as the basis (somewhat following LEVELT 1989), I will argue that truth-condition variation can naturally lead to the over-represented use of past tenses (Passé composé in French) in child language for the expression of telic events during early acquisition (cf. e.g. WAGNER 2009).
Resumo:
Delta(3),Delta(2)-enoyl CoA isomerase (ECI) is an enzyme that participates in the degradation of unsaturated fatty acids through the beta-oxidation cycle. Three genes encoding Delta(3),Delta(2)-enoyl CoA isomerases and named AtECI1, AtECI2 and AtECI3 have been identified in Arabidopsis thaliana. When expressed heterologously in Saccharomyces cerevisiae, all three ECI proteins were targeted to the peroxisomes and enabled the yeast Deltaeci1 mutant to degrade 10Z-heptadecenoic acid, demonstrating Delta(3),Delta(2)-enoyl CoA isomerase activity in vivo. Fusion proteins between yellow fluorescent protein and AtECI1 or AtECI2 were targeted to the peroxisomes in onion epidermal cells and Arabidopsis root cells, but a similar fusion protein with AtECI3 remained in the cytosol for both tissues. AtECI3 targeting to peroxisomes in S. cerevisiae was dependent on yeast PEX5, while expression of Arabidopsis PEX5 in yeast failed to target AtECI3 to peroxisomes. AtECI2 and AtECI3 are tandem duplicated genes and show a high level of amino acid conservation, except at the C-terminus; AtECI2 ends with the well conserved peroxisome targeting signal 1 (PTS1) terminal tripeptide PKL, while AtECI3 possesses a divergent HNL terminal tripeptide. Evolutionary analysis of ECI genes in plants revealed several independent duplication events, with duplications occurring in rice and Medicago truncatula, generating homologues with divergent C-termini and no recognizable PTS1. All plant ECI genes analyzed, including AtECI3, are under negative purifying selection, implying functionality of the cytosolic AtECI3. Analysis of the mammalian and fungal genomes failed to identify cytosolic variants of the Delta(3),Delta(2)-enoyl CoA isomerase, indicating that evolution of cytosolic Delta(3),Delta(2)-enoyl CoA isomerases is restricted to the plant kingdom
Resumo:
Madin-Darby canine kidney cells (MDCK) were transfected with a cDNA encoding the glycosyl-phosphatidylinositol (GPI)-anchored protein mouse Thy-1 in order to study the steady-state surface distribution of exogenous and endogenous GPI-linked proteins. Immunofluorescence of transfected cells grown on collagen-coated coverslips showed that expression of Thy-1 was variable throughout the epithelium, with some cells expressing large amounts of Thy-1 adjacent to very faintly staining cells. Selective surface iodination of cells grown on collagen-coated or uncoated transwell filters followed by immunoprecipitation of Thy-1 demonstrated that all the Thy-1 was present exclusively in the apical plasma membrane. Although cells grown on uncoated filters had much smaller amounts of Thy-1, it was consistently localized on the apical surfaces. Immunofluorescent localization of Thy-1 on 1 micron frozen sections of filter-grown cells demonstrated that all the Thy-1 was on the apical surface and there was no detectable intracellular pool. Phosphatidylinositol-specific phospholipase C digestion of intact iodinated monolayers released Thy-1 only into the apical medium, indicating that Thy-1 was processed normally in transfected cells and was anchored by a GPI-tail. In agreement with previous findings, endogenous GPI-linked proteins were found only on the apical plasma membrane. These results suggest that there is a common mechanism for sorting and targeting of GPI-linked proteins in polarized epithelial cells.
Resumo:
Myhre syndrome (MIM 139210) is a developmental disorder characterized by short stature, short hands and feet, facial dysmorphism, muscular hypertrophy, deafness and cognitive delay. Using exome sequencing of individuals with Myhre syndrome, we identified SMAD4 as a candidate gene that contributes to this syndrome on the basis of its pivotal role in the bone morphogenetic pathway (BMP) and transforming growth factor (TGF)-β signaling. We identified three distinct heterozygous missense SMAD4 mutations affecting the codon for Ile500 in 11 individuals with Myhre syndrome. All three mutations are located in the region of SMAD4 encoding the Mad homology 2 (MH2) domain near the site of monoubiquitination at Lys519, and we found a defect in SMAD4 ubiquitination in fibroblasts from affected individuals. We also observed decreased expression of downstream TGF-β target genes, supporting the idea of impaired TGF-β-mediated transcriptional control in individuals with Myhre syndrome.
Resumo:
PURPOSE: To investigate the impact of end-systolic imaging on quality of right coronary magnetic resonance angiography (MRA) in comparison to diastolic and to study the effect of RR interval variability on image quality. MATERIALS AND METHODS: The right coronary artery (RCA) of 10 normal volunteers was imaged at 3T using parallel imaging (sensitivity encoding [SENSE]). Navigator-gated three-dimensional (3D) gradient echo was used three times: 1) end-systolic short acquisition (SS): 35-msec window; 2) diastolic short (DS): middiastolic acquisition using 35-msec window; and 3) diastolic long (DL): 75-msec diastolic acquisition window. Vectorcardiogram (VCG) data was used to analyze RR variability. Vessel sharpness, length, and diameter were compared to each other and correlated with RR variability. Blinded qualitative image scores of the images were compared. RESULTS: Quantitative and qualitative parameters were not significantly different and showed no significant correlation with RR variability. CONCLUSION: Imaging the RCA at 3T during the end-systolic rest period using SENSE is possible without significant detrimental effect on image quality. Breaking away from the standard of imaging only during diastole can potentially improve image quality in tachycardic patients or used for simultaneous imaging during both periods in a single scan.
Resumo:
Phagocytosis, whether of food particles in protozoa or bacteria and cell remnants in the metazoan immune system, is a conserved process. The particles are taken up into phagosomes, which then undergo complex remodeling of their components, called maturation. By using two-dimensional gel electrophoresis and mass spectrometry combined with genomic data, we identified 179 phagosomal proteins in the amoeba Dictyostelium, including components of signal transduction, membrane traffic, and the cytoskeleton. By carrying out this proteomics analysis over the course of maturation, we obtained time profiles for 1,388 spots and thus generated a dynamic record of phagosomal protein composition. Clustering of the time profiles revealed five clusters and 24 functional groups that were mapped onto a flow chart of maturation. Two heterotrimeric G protein subunits, Galpha4 and Gbeta, appeared at the earliest times. We showed that mutations in the genes encoding these two proteins produce a phagocytic uptake defect in Dictyostelium. This analysis of phagosome protein dynamics provides a reference point for future genetic and functional investigations.
Resumo:
Na-K-adenosinetriphosphatase (Na-K-ATPase) is a potential target for phosphorylation by protein kinase A (PKA) and C (PKC). We have investigated whether the Na-K-ATPase alpha-subunit becomes phosphorylated at its PKA or PKC phosphorylation sites upon stimulation of G protein-coupled receptors primarily linked either to the PKA or the PKC pathway. COS-7 cells, transiently or stably expressing Bufo marinus Na-K-ATPase wild-type alpha- or mutant alpha-subunits affected in its PKA or PKC phosphorylation site, were transfected with recombinant DNA encoding beta 2- or alpha 1-adrenergic (AR), dopaminergic (D1A-R), or muscarinic cholinergic (M1-AChR) receptor subspecies. Agonist stimulation of beta 2-AR or D1A-R led to phosphorylation of the wild-type alpha-subunit, as well as the PKC mutant, but not of the PKA mutant, indicating that these receptors can phosphorylate the Na-K-ATPase via PKA activation. Surprisingly, stimulation of the alpha 1B-AR, alpha 1C-AR, and M1-AChR also increased the phosphorylation of the wild-type alpha-subunit and its PKC mutant but not of its PKA mutant. Thus the phosphorylation induced by these primarily phospholipase C-linked receptors seems mainly mediated by PKA activation. These data indicate that the Na-K-ATPase alpha-subunit can act as an ultimate target for PKA phosphorylation in a cascade starting with agonist-receptor interaction and leading finally to a phosphorylation-mediated regulation of the enzyme.