160 resultados para Electronic portfolio system
Resumo:
BACKGROUND: Poor long-term adherence is an important cause of uncontrolled hypertension. We examined whether monitoring drug adherence with an electronic system improves long-term blood pressure (BP) control in hypertensive patients followed by general practitioners (GPs). METHODS: A pragmatic cluster randomised controlled study was conducted over one year in community pharmacists/GPs' networks randomly assigned either to usual care (UC) where drugs were dispensed as usual, or to intervention (INT) group where drug adherence could be monitored with an electronic system (Medication Event Monitoring System). No therapy change was allowed during the first 2 months in both groups. Thereafter, GPs could modify therapy and use electronic monitors freely in the INT group. The primary outcome was a target office BP<140/90 mmHg. RESULTS: Sixty-eight treated uncontrolled hypertensive patients (UC: 34; INT: 34) were enrolled. Over the 12-month period, the likelihood of reaching the target BP was higher in the INT group compared to the UC group (p<0.05). At 4 months, 38% in the INT group reached the target BP vs. 12% in the UC group (p<0.05), and 21% vs. 9% at 12 months (p: ns). Multivariate analyses, taking account of baseline characteristics, therapy modification during follow-up, and clustering effects by network, indicate that being allocated to the INT group was associated with a greater odds of reaching the target BP at 4 months (p<0.01) and at 12 months (p=0.051). CONCLUSION: GPs monitoring drug adherence in collaboration with pharmacists achieved a better BP control in hypertensive patients, although the impact of monitoring decreased with time.
Resumo:
Many basic physiological functions exhibit circadian rhythmicity. These functional rhythms are driven, in part, by the circadian clock, an ubiquitous molecular mechanism allowing cells and tissues to anticipate regular environmental events and to prepare for them. This mechanism has been shown to play a particularly important role in maintaining stability (homeostasis) of internal conditions. Because the homeostatic equilibrium is continuously challenged by environmental changes, the role of the circadian clock is thought to consist in the anticipative adjustment of homeostatic pathways in relation with the 24h environmental cycle. The kidney is the principal organ responsible for the regulation of the composition and volume of extracellular fluids (ECF). Several major parameters of kidney function, including renal plasma flow (RPF), glomerular filtration rate (GFR) and tubular reabsorption and secretion have been shown to exhibit strong circadian oscillations. Recent evidence suggest that the circadian clock can be involved in generation of these rhythms through external circadian time cues (e.g. humoral factors, activity and body temperature rhythms) or, trough the intrinsic renal circadian clock. Here, we discuss the role of renal circadian mechanisms in maintaining homeostasis of water and three major ions, namely, Na(+), K(+) and Cl(-).
Resumo:
Hepatitis C virus (HCV) infection induces the endogenous interferon (IFN) system in the liver in some but not all patients with chronic hepatitis C (CHC). Patients with a pre-activated IFN system are less likely to respond to the current standard therapy with pegylated IFN-alpha. Mitochondrial antiviral signaling protein (MAVS) is an important adaptor molecule in a signal transduction pathway that senses viral infections and transcriptionally activates IFN-beta. The HCV NS3-4A protease can cleave and thereby inactivate MAVS in vitro, and, therefore, might be crucial in determining the activation status of the IFN system in the liver of infected patients. We analyzed liver biopsies from 129 patients with CHC to investigate whether MAVS is cleaved in vivo and whether cleavage prevents the induction of the endogenous IFN system. Cleavage of MAVS was detected in 62 of the 129 samples (48%) and was more extensive in patients with a high HCV viral load. MAVS was cleaved by all HCV genotypes (GTs), but more efficiently by GTs 2 and 3 than by GTs 1 and 4. The IFN-induced Janus kinase (Jak)-signal transducer and activator of transcription protein (STAT) pathway was less frequently activated in patients with cleaved MAVS, and there was a significant inverse correlation between cleavage of MAVS and the expression level of the IFN-stimulated genes IFI44L, Viperin, IFI27, USP18, and STAT1. We conclude that the pre-activation status of the endogenous IFN system in the liver of patients with CHC is in part regulated by cleavage of MAVS.
Resumo:
Charcot-Marie-Tooth disease type 4C (CMT4C) is an early-onset, autosomal recessive form of demyelinating neuropathy. The clinical manifestations include progressive scoliosis, delayed age of walking, muscular atrophy, distal weakness, and reduced nerve conduction velocity. The gene mutated in CMT4C disease, SH3TC2/KIAA1985, was recently identified; however, the function of the protein it encodes remains unknown. We have generated knockout mice where the first exon of the Sh3tc2 gene is replaced with an enhanced GFP cassette. The Sh3tc2(DeltaEx1/DeltaEx1) knockout animals develop progressive peripheral neuropathy manifested by decreased motor and sensory nerve conduction velocity and hypomyelination. We show that Sh3tc2 is specifically expressed in Schwann cells and localizes to the plasma membrane and to the perinuclear endocytic recycling compartment, concordant with its possible function in myelination and/or in regions of axoglial interactions. Concomitantly, transcriptional profiling performed on the endoneurial compartment of peripheral nerves isolated from control and Sh3tc2(DeltaEx1/DeltaEx1) animals uncovered changes in transcripts encoding genes involved in myelination and cell adhesion. Finally, detailed analyses of the structures composed of compact and noncompact myelin in the peripheral nerve of Sh3tc2(DeltaEx1/DeltaEx1) animals revealed abnormal organization of the node of Ranvier, a phenotype that we confirmed in CMT4C patient nerve biopsies. The generated Sh3tc2 knockout mice thus present a reliable model of CMT4C neuropathy that was instrumental in establishing a role for Sh3tc2 in myelination and in the integrity of the node of Ranvier, a morphological phenotype that can be used as an additional CMT4C diagnostic marker.
Resumo:
Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.
Resumo:
Integrative and conjugative elements (ICEs) are particularly interesting model systems for horizontal gene transfer, because they normally reside in an integrated state in the host chromosome but can excise and self-transfer under particular conditions, typically requiring exquisite regulatory cascades. Despite important advances in our understanding of the transfer mechanisms of a number of ICE, many essential details are lacking. Recently we reported that ICEclc, a 103 kb ICE of Pseudomonas knackmussii B13, has two active origins of transfer (oriTs), which is very much unlike conjugative plasmids that usually employ a single oriT. We discuss here how this dual oriT system could function and how it actually could have presented an evolutionary advantage for ICEclc distribution.
Resumo:
Pseudomonas azelaica HBP1 is one of the few bacteria known to completely mineralize the biocide and toxic compound 2-hydroxybiphenyl (2-HBP), but the mechanisms of its tolerance to the toxicity are unknown. By transposon mutant analysis and screening for absence of growth on water saturating concentrations of 2-HBP (2.7 mM) we preferentially found insertions in three genes with high homology to the mexA, mexB, and oprM efflux system. Mutants could grow at 2-HBP concentrations below 100 μM but at lower growth rates than the wild-type. Exposure of the wild-type to increasing 2-HBP concentrations resulted in acute cell growth arrest and loss of membrane potential, to which the cells adapt after a few hours. By using ethidium bromide (EB) as proxy we could show that the mutants are unable to expel EB effectively. Inclusion of a 2-HBP reporter plasmid revealed that the wild-type combines efflux with metabolism at all 2-HBP concentrations, whereas the mutants cannot remove the compound and arrest metabolism at concentrations above 24 μM. The analysis thus showed the importance of the MexAB-OprM system for productive metabolism of 2-HBP.
Resumo:
OBJECTIVES: We investigated the influence of angiotensin receptor blockade and angiotensin-converting enzyme inhibition on stress-induced platelet activation in hypertensive patients. Secondary aims were effects on inflammation, coagulation, and endothelial function. METHODS: Following a 4-week placebo period, 25 hypertensive patients entered a double-blind, crossover study comparing enalapril (20 mg once daily) and losartan (100 mg once daily) treatment (each for 8 weeks). Patients were studied at rest and after a standardized exercise test. RESULTS: Mean arterial pressure was reduced from 119 ± 2 to 104 ± 2 (enalapril) and 106 ± 2 (losartan) mmHg (both P <0.001). Plasma angiotensin II decreased from 2.4 ± 0.4 to 0.5 ± 0.1 pmol/l with enalapril, and increased to 7.2 ± 1.3 pmol/l with losartan (both P <0.001). Exercise-evoked platelet activation, as evidenced by increased numbers of P-selectin-positive platelets (P <0.01), elevated circulating platelet-platelet aggregates (P <0.01) and soluble P-selectin levels (P <0.001), and increased platelet responsiveness to adenosine diphosphate and thrombin (both P <0.05). Neither drug influenced these markers of platelet activation at rest or following exercise. Markers of inflammation (high-sensitivity C reactive protein, interleukin-6, tissue necrosis factor-α), coagulation (tissue plasminogen activator antigen, prothrombin fragment F1+2), and endothelial function (von Willebrand factor, soluble vascular cellular adhesion molecule-1, and intercellular adhesion molecule-1) were also uninfluenced by treatment. CONCLUSION: Enalapril and losartan failed to reduce platelet activity both at rest and during exercise in hypertensive patients. Markers of inflammation, coagulation, and endothelial function were similarly unaffected. Inhibition of the renin-angiotensin system promotes its beneficial effects in hypertension through mechanisms other than platelet inhibition.
Resumo:
We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.
Resumo:
The melanocortin system is implicated in the expression of many phenotypic traits. Activation of the melanocortin MC(1) receptor by melanocortin hormones induces the production of brown/black eumelanic pigments, while activation of the four other melanocortin receptors affects other physiological and behavioural functions including stress response, energy homeostasis, anti-inflammatory and sexual activity, aggressiveness and resistance to oxidative stress. We recently proposed the hypothesis that some melanocortin-physiological and -behavioural traits are correlated within individuals. This hypothesis predicts that the degree of eumelanin production may, in some cases, be associated with the regulation of glucocorticoids, immunity, resistance to oxidative stress, energy homeostasis, sexual activity, and aggressiveness. A review of the zoological literature and detailed experimental studies in a free-living population of barn owls (Tyto alba) showed that indeed melanic coloration is often correlated with the predicted physiological and behavioural traits. Support for predictions of the hypothesis that covariations between coloration and other phenotypic traits stem from pleiotropic effects of the melanocortin system raises a number of theoretical and empirical issues from evolutionary and pharmacological point of views.
Resumo:
The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc) whereby the Crc protein establishes translational repression of target mRNAs at CA (catabolite activity) motifs present in target mRNAs near ribosome binding sites. Poor carbon sources lead to activation of the CbrAB two-component system, which induces transcription of the small RNA (sRNA) CrcZ. This sRNA relieves Crc-mediated repression of target mRNAs. In this study, we have identified novel targets of the CbrAB/Crc system in P. aeruginosa using transcriptome analysis in combination with a search for CA motifs. We characterized four target genes involved in the uptake and utilization of less preferred carbon sources: estA (secreted esterase), acsA (acetyl-CoA synthetase), bkdR (regulator of branched-chain amino acid catabolism) and aroP2 (aromatic amino acid uptake protein). Evidence for regulation by CbrAB, CrcZ and Crc was obtained in vivo using appropriate reporter fusions, in which mutation of the CA motif resulted in loss of catabolite repression. CbrB and CrcZ were important for growth of P. aeruginosa in cystic fibrosis (CF) sputum medium, suggesting that the CbrAB/Crc system may act as an important regulator during chronic infection of the CF lung.
Resumo:
Many research projects in life sciences require purified biologically active recombinant protein. In addition, different formats of a given protein may be needed at different steps of experimental studies. Thus, the number of protein variants to be expressed and purified in short periods of time can expand very quickly. We have therefore developed a rapid and flexible expression system based on described episomal vector replication to generate semi-stable cell pools that secrete recombinant proteins. We cultured these pools in serum-containing medium to avoid time-consuming adaptation of cells to serum-free conditions, maintain cell viability and reuse the cultures for multiple rounds of protein production. As such, an efficient single step affinity process to purify recombinant proteins from serum-containing medium was optimized. Furthermore, a series of multi-cistronic vectors were designed to enable simultaneous expression of proteins and their biotinylation in vivo as well as fast selection of protein-expressing cell pools. Combining these improved procedures and innovative steps, exemplified with seven cytokines and cytokine receptors, we were able to produce biologically active recombinant endotoxin free protein at the milligram scale in 4-6weeks from molecular cloning to protein purification.
Resumo:
OBJECTIVE: Most symptomatic chronic subdural hematomas are treated by subdural drainage. However, a subperiostal (i.e., extracranial) passive closed-drainage system in combination with double burr hole trepanation is used at our institution. Therefore, we wanted to analyze our results and compare them with the alternate treatment strategies reported in the current literature. METHODS: In a retrospective single-center study, we analyzed the data of all patients undergoing double burr hole trepanation with a subperiostal passive closed-drainage system. Data analysis included general patient data, complications, postoperative seizure rate, and outcome. RESULTS: One hundred forty-seven patients underwent surgery for 183 symptomatic chronic subdural hematomas. The perioperative mortality rate was 3.4%. Hematoma persistence or recurrence occurred in 13.1% of the cases. The postoperative seizure rate was 6.6%, and the infection rate was 1.6%, including 3 cases of superficial wound infection and 1 case with deep infection. The reintervention rate was 9.3%, including trepanation in 8.2% of the patients and craniotomy in 1.1%. The overall complication rate was 10.9%. CONCLUSION: Double burr hole trepanation combined with a subperiostal passive closed-drainage system is a technically easy, highly effective, safe, and cost-efficient treatment strategy for symptomatic chronic subdural hematomas. The absence of a drain in direct contact with the hematoma capsule may moderate the risk of postoperative seizure and limit the secondary spread of infection to intracranial compartments.
Resumo:
Objective The goal of this study was to investigate whether increasing the dose of an angiotensin II receptor blocker (ARB) provides as much benefits as combining the ARB with an angiotensin-converting enzyme inhibitor (ACEI) in terms of blood pressure (BP) control and urinary albumin excretion (UAE) in hypertensive patients with a proteinuria.Methods We enrolled 20 hypertensive patients with proteinuric nephropathies and a reduced renal function in a randomized, 12-month, triple-crossover, prospective, open-label study to compare the effects of a regular dose of losartan (Los 100mg q.d., LOS100) vs. a high dose of losartan (Los 100mg b.i.d., LOS200) vs. losartan 100mg q.d. associated with lisinopril 20 mg q.d. (LOS100 + LIS20). Each treatment was given for 8 weeks with a 4-week initial run-in period and 2 weeks of washout between each treatment phases. 24 h UAE and ambulatory BP were measured during the running phase and at the end of each treatment period.Results Compared to pretreatment, 24 h SBP and DBP were reduced by 10/5 +/- 7/4 mmHg with LOS100 (P=0.023 vs. baseline) and, respectively, 13/6 +/- 12/5 mmHg with LOS200 (P=0.011) and 19/9 +/- 15/8 mmHg with LOS100+LIS20 (P < 0.01). UAE decreased significantly with LOS100 and to an even greater degree with LOS200 and LOS100+LIS20 (P < 0.01 vs. baseline for both and P=0.032, LOS100+LIS20 vs. LOS200). The combination had a greater impact in patients with a high baseline proteinuria as suggested by a nonparallel leftward shift of the relationship between the changes in UAE induced by the combination and those induced by LOS200. The high dose of losartan was better tolerated than the combination.Conclusion Increasing the dose of losartan from 100mg once daily to 100mg twice a day enables to obtain a greater decrease in BP and proteinuria and is better tolerated than combining the ARB with lisinopril, though the high dose appears to be slightly less effective than the combination in patients with a marked proteinuria. J Hypertens 29: 1228-1235 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
The adaptive function of melanin-based coloration is a long-standing debate. A recent genetic model suggested that pleiotropy could account for covariations between pigmentation, behaviour, morphology, physiology and life history traits. We explored whether the expression levels of genes belonging to the melanocortin system (MC1R, POMC, PC1/3, PC2 and the antagonist ASIP), which have many pleiotropic effects, are associated with melanogenesis (through variation in the expression of the genes MITF, SLC7A11, TYR, TYRP1) and in turn melanin-based coloration. We considered the tawny owl (Strix aluco) because individuals vary continuously from light to dark reddish, and thus, colour variation is likely to stem from differences in the levels of gene expression. We measured gene expression in feather bases collected in nestlings at the time of melanin production. As expected, the melanocortin system was associated with the expression of melanogenic genes and pigmentation. Offspring of darker reddish fathers expressed PC1/3 to lower levels but tended to express PC2 to higher levels. The convertase enzyme PC1/3 cleaves the POMC prohormone to obtain ACTH, while the convertase enzyme PC2 cleaves ACTH to produce α-melanin-stimulating hormone (α-MSH). ACTH regulates glucocorticoids, hormones that modulate stress responses, while α-MSH induces eumelanogenesis. We therefore conclude that the melanocortin system, through the convertase enzymes PC1/3 and PC2, may account for part of the interindividual variation in melanin-based coloration in nestling tawny owls. Pleiotropy may thus account for the covariation between phenotypic traits involved in social interactions (here pigmentation) and life history, morphology, behaviour and physiology.