107 resultados para Electrical motor
Resumo:
Refractory status epilepticus (RSE)-that is, seizures resistant to at least two antiepileptic drugs (AEDs)-is generally managed with barbiturates, propofol, or midazolam, despite a low level of evidence (Rossetti, 2007). When this approach fails, the need for alternative pharmacologic and nonpharmacologic strategies emerges. These have been investigated even less systematically than the aforementioned compounds, and are often used, sometimes in succession, in cases of extreme refractoriness (Robakis & Hirsch, 2006). Several possibilities are reviewed here. In view of the marked heterogeneity of reported information, etiologies, ages, and comedications, it is extremely difficult to evaluate a given method, not to say to compare different strategies among them. Pharmacologic Approaches Isoflurane and desflurane may complete the armamentarium of anesthetics,' and should be employed in a ''close'' environment, in order to prevent intoxication of treating personnel. c-Aminobutyric acid (GABA)A receptor potentiation represents the putative mechanism of action. In an earlier report, isoflurane was used for up to 55 h in nine patients, controlling seizures in all; mortality was, however, 67% (Kofke et al., 1989). More recently, the use of these inhalational anesthetics was described in seven subjects with RSE, for up to 26 days, with an endtidal concentration of 1.2-5%. All patients required vasopressors, and paralytic ileus occurred in three; outcome was fatal in three patients (43%) (Mirsattari et al., 2004). Ketamine, known as an emergency anesthetic because of its favorable hemodynamic profile, is an N-methyl-daspartate (NMDA) antagonist; the interest for its use in RSE derives from animal works showing loss of GABAA efficacy and maintained NMDA sensitivity in prolonged status epilepticus (Mazarati & Wasterlain, 1999). However, to avoid possible neurotoxicity, it appears safer to combine ketamine with GABAergic compounds (Jevtovic-Todorovic et al., 2001; Ubogu et al., 2003), also because of a likely synergistic effect (Martin & Kapur, 2008). There are few reported cases in humans, describing progressive dosages up to 7.5 mg/kg/h for several days (Sheth & Gidal, 1998; Quigg et al., 2002; Pruss & Holtkamp, 2008), with moderate outcomes. Paraldehyde acts through a yet-unidentified mechanism, and appears to be relatively safe in terms of cardiovascular tolerability (Ramsay, 1989; Thulasimani & Ramaswamy, 2002), but because of the risk of crystal formation and its reactivity with plastic, it should be used only as fresh prepared solution in glass devices (Beyenburg et al., 2000). There are virtually no recent reports regarding its use in adults RSE, whereas rectal paraldehyde in children with status epilepticus resistant to benzodiazepines seems less efficacious than intravenous phenytoin (Chin et al., 2008). Etomidate is another anesthetic agent for which the exact mechanism of action is also unknown, which is also relatively favorable regarding cardiovascular side effects, and may be used for rapid sedation. Its use in RSE was reported in eight subjects (Yeoman et al., 1989). After a bolus of 0.3 mg/kg, a drip of up to 7.2 mg/kg/h for up to 12 days was administered, with hypotension occurring in five patients; two patients died. A reversible inhibition of cortisol synthesis represents an important concern, limiting its widespread use and implying a careful hormonal substitution during treatment (Beyenburg et al., 2000). Several nonsedating approaches have been reported. The use of lidocaine in RSE, a class Ib antiarrhythmic agent modulating sodium channels, was reviewed in 1997 (Walker & Slovis, 1997). Initial boluses up to 5 mg/kg and perfusions of up to 6 mg/kg/h have been mentioned; somewhat surprisingly, at times lidocaine seemed to be successful in controlling seizures in patients who were refractory to phenytoin. The aforementioned dosages should not be overshot, in order to keep lidocaine levels under 5 mg/L and avoid seizure induction (Hamano et al., 2006). A recent pediatric retrospective survey on 57 RSE episodes (37 patients) described a response in 36%, and no major adverse events; mortality was not given (Hamano et al., 2006 Verapamil, a calcium-channel blocker, also inhibits P-glycoprotein, a multidrug transporter that may diminish AED availability in the brain (Potschka et al., 2002). Few case reports on its use in humans are available; this medication nevertheless appears relatively safe (under cardiac monitoring) up to dosages of 360 mg/day (Iannetti et al., 2005). Magnesium, a widely used agent for seizures elicited by eclampsia, has also been anecdotally reported in RSE (Fisher et al., 1988; Robakis & Hirsch, 2006), but with scarce results even at serum levels of 14 mm. The rationale may be found in the physiologic blockage of NMDA channels by magnesium ions (Hope & Blumenfeld, 2005). Ketogenic diet has been prescribed for decades, mostly in children, to control refractory seizures. Its use in RSE as ''ultima ratio'' has been occasionally described: three of six children (Francois et al., 2003) and one adult (Bodenant et al., 2008) were responders. This approach displays its effect subacutely over several days to a few weeks. Because ''malignant RSE'' seems at times to be the consequence of immunologic processes (Holtkamp et al., 2005), a course of immunomodulatory treatment is often advocated in this setting, even in the absence of definite autoimmune etiologies (Robakis & Hirsch, 2006); steroids, adrenocorticotropic hormone (ACTH), plasma exchanges, or intravenous immunoglobulins may be used alone or in sequential combination. Nonpharmacologic Approaches These strategies are described somewhat less frequently than pharmacologic approaches. Acute implantation of vagus nerve stimulation (VNS) has been reported in RSE (Winston et al., 2001; Patwardhan et al., 2005; De Herdt et al., 2009). Stimulation was usually initiated in the operation room, and intensity progressively adapted over a few days up to 1.25 mA (with various regimens regarding the other parameters), allowing a subacute seizure control; one transitory episode of bradycardia/asystole has been described (De Herdt et al., 2009). Of course, pending identification of a definite seizure focus, resective surgery may also be considered in selected cases (Lhatoo & Alexopoulos, 2007). Low-frequency (0.5 Hz) transcranial magnetic stimulation (TMS) at 90% of the resting motor threshold has been reported to be successful for about 2 months in a patient with epilepsia partialis continua, but with a weaning effect afterward, implying the need for a repetitive use (Misawa et al., 2005). More recently, TMS was applied in a combination of a short ''priming'' high frequency (up to 100 Hz) and longer runs of low-frequency stimulations (1 Hz) at 90-100% of the motor threshold in seven other patients with simple-partial status, with mixed results (Rotenberg et al., 2009). Paradoxically at first glance, electroconvulsive treatment may be found in cases of extremely resistant RSE. A recent case report illustrates its use in an adult patient with convulsive status, with three sessions (three convulsions each) carried out over 3 days, resulting in a moderate recovery; the mechanism is believed to be related to modification of the synaptic release of neurotransmitters (Cline & Roos, 2007). Therapeutic hypothermia, which is increasingly used in postanoxic patients (Oddo et al., 2008), has been the object of a recent case series in RSE (Corry et al., 2008). Reduction of energy demand, excitatory neurotransmission, and neuroprotective effects may account for the putative mechanism of action. Four adult patients in RSE were cooled to 31_-34_C with an endovascular system for up to 90 h, and then passively rewarmed over 2-50 h. Seizures were controlled in two patients, one of whom died; also one of the other two patients in whom seizures continued subsequently deceased. Possible side effects are related to acid-base and electrolyte disturbances, and coagulation dysfunction including thrombosis, infectious risks, cardiac arrhythmia, and paralytic ileus (Corry et al., 2008; Cereda et al., 2009). Finally, anecdotic evidence suggests that cerebrospinal fluid (CSF)-air exchange may induce some transitory benefit in RSE (Kohrmann et al., 2006); although this approach was already in use in the middle of the twentieth century, the mechanism is unknown. Acknowledgment A wide spectrum of pharmacologic (sedating and nonsedating) and nonpharmacologic (surgical, or involving electrical stimulation) regimens might be applied to attempt RSE control. Their use should be considered only after refractoriness to AED or anesthetics displaying a higher level of evidence. Although it seems unlikely that these uncommon and scarcely studied strategies will influence the RSE outcome in a decisive way, some may be interesting in particular settings. However, because the main prognostic determinant in status epilepticus appears to be related to the underlying etiology rather than to the treatment approach (Rossetti et al., 2005, 2008), the safety issue should always represent a paramount concern for the prescribing physician. Conclusion The author confirms that he has read the Journal's position on issues involved in ethical publication and affirms that this paper is consistent with those guidelines.
Resumo:
There is growing interest in understanding the role of the non-injured contra-lateral hemisphere in stroke recovery. In the experimental field, histological evidence has been reported that structural changes occur in the contra-lateral connectivity and circuits during stroke recovery. In humans, some recent imaging studies indicated that contra-lateral sub-cortical pathways and functional and structural cortical networks are remodeling, after stroke. Structural changes in the contra-lateral networks, however, have never been correlated to clinical recovery in patients. To determine the importance of the contra-lateral structural changes in post-stroke recovery, we selected a population of patients with motor deficits after stroke affecting the motor cortex and/or sub-cortical motor white matter. We explored i) the presence of Generalized Fractional Anisotropy (GFA) changes indicating structural alterations in the motor network of patientsâeuro? contra-lateral hemisphere as well as their longitudinal evolution ii) the correlation of GFA changes with patientsâeuro? clinical scores, stroke size and demographics data iii) and a predictive model.
Resumo:
OBJECTIVE: To assess the effect of a governmentally-led center based child care physical activity program (Youp'la Bouge) on child motor skills.Patients and methods: We conducted a single blinded cluster randomized controlled trial in 58 Swiss child care centers. Centers were randomly selected and 1:1 assigned to a control or intervention group. The intervention lasted from September 2009 to June 2010 and included training of the educators, adaptation of the child care built environment, parental involvement and daily physical activity. Motor skill was the primary outcome and body mass index (BMI), physical activity and quality of life secondary outcomes. The intervention implementation was also assessed. RESULTS: At baseline, 648 children present on the motor test day were included (age 3.3 +/- 0.6, BMI 16.3 +/- 1.3 kg/m2, 13.2% overweight, 49% girls) and 313 received the intervention. Relative to children in the control group (n = 201), children in the intervention group (n = 187) showed no significant increase in motor skills (delta of mean change (95% confidence interval: -0.2 (-0.8 to 0.3), p = 0.43) or in any of the secondary outcomes. Not all child care centers implemented all the intervention components. Within the intervention group, several predictors were positively associated with trial outcomes: 1) free-access to a movement space and parental information session for motor skills 2) highly motivated and trained educators for BMI 3) free-access to a movement space and purchase of mobile equipment for physical activity (all p < 0.05). CONCLUSION: This "real-life" physical activity program in child care centers confirms the complexity of implementing an intervention outside a study setting and identified potentially relevant predictors that could improve future programs.Trial registration: Trial registration number: clinical trials.gov NCT00967460 http://clinicaltrials.gov/ct2/show/NCT00967460.
Resumo:
The nutritional status of cystic fibrosis (CF) patients has to be regularly evaluated and alimentary support instituted when indicated. Bio-electrical impedance analysis (BIA) is a recent method for determining body composition. The present study evaluates its use in CF patients without any clinical sign of malnutrition. Thirty-nine patients with CF and 39 healthy subjects aged 6-24 years were studied. Body density and mid-arm muscle circumference were determined by anthropometry and skinfold measurements. Fat-free mass was calculated taking into account the body density. Muscle mass was obtained from the urinary creatinine excretion rate. The resistance index was calculated by dividing the square of the subject's height by the body impedance. We show that fat-free mass, mid-arm muscle circumference and muscle mass are each linearly correlated to the resistance index and that the regression equations are similar for both CF patients and healthy subjects.
Resumo:
BACKGROUND: Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators.METHODS: In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with (31)phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems.RESULTS: We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by (31)phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity.CONCLUSIONS: Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases.
Resumo:
The present study discusses the effect of iron doping in TiO2 thin films deposited by rf sputtering. Iron doping induces a structural transformation from anatase to rutile and electrical measurements indicate that iron acts as an acceptor impurity. Thermoelectric power measurement shows a transition between n-type and p-type electrical conduction for an iron concentration around 0.13 at.%. The highest p-type conductivity at room temperature achieved by iron doping was 10(-6) S m(-1).
Resumo:
This study details a method to statistically determine, on a millisecond scale and for individual subjects, those brain areas whose activity differs between experimental conditions, using single-trial scalp-recorded EEG data. To do this, we non-invasively estimated local field potentials (LFPs) using the ELECTRA distributed inverse solution and applied non-parametric statistical tests at each brain voxel and for each time point. This yields a spatio-temporal activation pattern of differential brain responses. The method is illustrated here in the analysis of auditory-somatosensory (AS) multisensory interactions in four subjects. Differential multisensory responses were temporally and spatially consistent across individuals, with onset at approximately 50 ms and superposition within areas of the posterior superior temporal cortex that have traditionally been considered auditory in their function. The close agreement of these results with previous investigations of AS multisensory interactions suggests that the present approach constitutes a reliable method for studying multisensory processing with the temporal and spatial resolution required to elucidate several existing questions in this field. In particular, the present analyses permit a more direct comparison between human and animal studies of multisensory interactions and can be extended to examine correlation between electrophysiological phenomena and behavior.
Resumo:
We report a four-year-old African boy referred for proximal muscle weakness, fatigability and episodic limb pain. Classical causes of structural and metabolic myopathy were initially considered before clinical and biological features of vitamin D deficiency rickets were identified. Prompt treatment with vitamin D and calcium supplementation led to a complete reversal of the muscle symptoms. Rickets-associated myopathy should be included in the differential diagnosis of proximal myopathy, especially in at-risk individuals. Vitamin D deficiency and its prevention remain important health issues in industrialized countries.
Resumo:
BACKGROUND: Upper limb paresis remains a relevant challenge in stroke rehabilitation. AIM: To evaluate if adding mirror therapy (MT) to conventional therapy (CT) can improve motor recovery of the upper limb in subacute stroke patients. DESIGN: Prospective, single-center, single-blind, randomised, controlled trial. SETTING: Subacute stroke patients referred to a Physical and Rehabilitation Medicine Unit between October 2009 and August 2011. POPULATION: Twenty-six subacute stroke patients (time from stroke <4 weeks) with upper limb paresis (Motricity Index â0/00¤ 77). METHODS: Patients were randomly allocated to the MT (N.=13) or to the CT group (N.=13). Both followed a comprehensive rehabilitative treatment. In addition, MT Group had 30 minutes of MT while the CT group had 30 minutes of sham therapy. Action Research Arm Test (ARAT) was the primary outcome measures. Motricity Index (MI) and the Functional Independence Measure (FIM) were the secondary outcome measures. RESULTS: After one month of treatment patients of both groups showed statistically significant improvements in all the variables measured (P<0.05). Moreover patients of the MT group had greater improvements in the ARAT, MI and FIM values compared to CT group (P<0.01, Glass's Î" Effect Size: 1.18). No relevant adverse event was recorded during the study. CONCLUSION: MT is a promising and easy method to improve motor recovery of the upper limb in subacute stroke patients. CLINICAL REHABILITATION IMPACT: While MT use has been advocated for acute patients with no or negligible motor function, it can be usefully extended to patients who show partial motor recovery. The easiness of implementation, the low cost and the acceptability makes this therapy an useful tool in stroke rehabilitation.
Resumo:
Involuntary choreiform movements are a clinical hallmark of Huntington's disease. Studies in clinically affected patients suggest a shift of motor activations to parietal cortices in response to progressive neurodegeneration. Here, we studied pre-symptomatic gene carriers to examine the compensatory mechanisms that underlie the phenomenon of retained motor function in the presence of degenerative change. Fifteen pre-symptomatic gene carriers and 12 matched controls performed button presses paced by a metronome at either 0.5 or 2 Hz with four fingers of the right hand whilst being scanned with functional magnetic resonance imaging. Subjects pressed buttons either in the order of a previously learnt 10-item finger sequence, from left to right, or kept still. Error rates ranged from 2% to 7% in the pre-symptomatic gene carriers and from 0.5% to 4% in controls, depending on the condition. No significant difference in task performance was found between groups for any of the conditions. Activations in the supplementary motor area (SMA) and superior parietal lobe differed with gene status. Compared with healthy controls, gene carriers showed greater activations of left caudal SMA with all movement conditions. Activations correlated with increasing speed of movement were greater the closer the gene carriers were to estimated clinical diagnosis, defined by the onset of unequivocal motor signs. Activations associated with increased movement complexity (i.e. with the pre-learnt 10-item sequence) decreased in the rostral SMA with nearing diagnostic onset. The left superior parietal lobe showed reduced activation with increased movement complexity in gene carriers compared with controls, and in the right superior parietal lobe showed greater activations with all but the most demanding movements. We identified a complex pattern of motor compensation in pre-symptomatic gene carriers. The results show that preclinical compensation goes beyond a simple shift of activity from premotor to parietal regions involving multiple compensatory mechanisms in executive and cognitive motor areas. Critically, the pattern of motor compensation is flexible depending on the actual task demands on motor control.
Resumo:
Although there is consensus that the central nervous system mediates the increases in maximal voluntary force (maximal voluntary contraction, MVC) produced by resistance exercise, the involvement of the primary motor cortex (M1) in these processes remains controversial. We hypothesized that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of M1 during resistance training would diminish strength gains. Forty subjects were divided equally into five groups. Subjects voluntarily (Vol) abducted the first dorsal interosseus (FDI) (5 bouts x 10 repetitions, 10 sessions, 4 wk) at 70-80% MVC. Another group also exercised but in the 1-min-long interbout rest intervals they received rTMS [Vol+rTMS, 1 Hz, FDI motor area, 300 pulses/session, 120% of the resting motor threshold (rMT)]. The third group also exercised and received sham rTMS (Vol+Sham). The fourth group received only rTMS (rTMS_only). The 37.5% and 33.3% gains in MVC in Vol and Vol+Sham groups, respectively, were greater (P = 0.001) than the 18.9% gain in Vol+rTMS, 1.9% in rTMS_only, and 2.6% in unexercised control subjects who received no stimulation. Acutely, within sessions 5 and 10, single-pulse TMS revealed that motor-evoked potential size and recruitment curve slopes were reduced in Vol+rTMS and rTMS_only groups and accumulated to chronic reductions by session 10. There were no changes in rMT, maximum compound action potential amplitude (M(max)), and peripherally evoked twitch forces in the trained FDI and the untrained abductor digiti minimi. Although contributions from spinal sources cannot be excluded, the data suggest that M1 may play a role in mediating neural adaptations to strength training.