125 resultados para Dynamic equilibrium
Resumo:
The binding free energy for the interaction between serines 204 and 207 of the fifth transmembrane helix of the beta(2)-adrenergic receptor (beta(2)-AR) and catecholic hydroxyl (OH) groups of adrenergic agonists was analyzed using double mutant cycles. Binding affinities for catecholic and noncatecholic agonists were measured in wild-type and mutant receptors, carrying alanine replacement of the two serines (S204A, S207A beta(2)-AR), a constitutive activating mutation, or both. The free energy coupling between the losses of binding energy attributable to OH deletion from the ligand and from the receptor indicates a strong interaction (nonadditivity) as expected for a direct binding between the two sets of groups. However, we also measured a significant interaction between the deletion of OH groups from the receptor and the constitutive activating mutation. This suggests that a fraction of the decrease in agonist affinity caused by serine mutagenesis may involve a shift in the conformational equilibrium of the receptor toward the inactive state. Direct measurements using a transient transfection assay confirm this prediction. The constitutive activity of the (S204A, S207A) beta(2)-AR mutant is 50 to 60% lower than that of the wild-type beta(2)-AR. We conclude that S204 and S207 do not only provide a docking site for the agonist, but also control the equilibrium of the receptor between active (R*) and inactive (R) forms.
Resumo:
The molecular chaperone Hsp90-dependent proteome represents a complex protein network of critical biological and medical relevance. Known to associate with proteins with a broad variety of functions termed clients, Hsp90 maintains key essential and oncogenic signalling pathways. Consequently, Hsp90 inhibitors are being tested as anti-cancer drugs. Using an integrated systematic approach to analyse the effects of Hsp90 inhibition in T-cells, we quantified differential changes in the Hsp90-dependent proteome, Hsp90 interactome, and a selection of the transcriptome. Kinetic behaviours in the Hsp90-dependent proteome were assessed using a novel pulse-chase strategy (Fierro-Monti et al., accompanying article), detecting effects on both protein stability and synthesis. Global and specific dynamic impacts, including proteostatic responses, are due to direct inhibition of Hsp90 as well as indirect effects. As a result, a decrease was detected in most proteins that changed their levels, including known Hsp90 clients. Most likely, consequences of the role of Hsp90 in gene expression determined a global reduction in net de novo protein synthesis. This decrease appeared to be greater in magnitude than a concomitantly observed global increase in protein decay rates. Several novel putative Hsp90 clients were validated, and interestingly, protein families with critical functions, particularly the Hsp90 family and cofactors themselves as well as protein kinases, displayed strongly increased decay rates due to Hsp90 inhibitor treatment. Remarkably, an upsurge in survival pathways, involving molecular chaperones and several oncoproteins, and decreased levels of some tumour suppressors, have implications for anti-cancer therapy with Hsp90 inhibitors. The diversity of global effects may represent a paradigm of mechanisms that are operating to shield cells from proteotoxic stress, by promoting pro-survival and anti-proliferative functions. Data are available via ProteomeXchange with identifier PXD000537.
Resumo:
The purpose of this study is to introduce and describe a newly developed index using foot pressure analysis to quantify the degree of equinus gait in children with cerebral palsy before and after injection with botulinum toxin. Data were captured preinjection and 12 weeks postinjection. Ten children aged 2(1/2) to 6(1/2) years took part (5 boys and 5 girls). Three of them had a diagnosis of spastic diplegia and 7 of congenital hemiplegia. In total, 13 limbs were analyzed. After orientation and segmentation of raw pedobarographic data, we determined a dynamic foot pressure index graded 0 to 100 that quantified the relative degree of heel and forefoot contact during stance. These data were correlated (Pearson correlation) with clinical measurements of dorsiflexion at the ankle (on a slow and fast stretch) and video observation (using the Observational Gait Scale). Pedobarograph data were strongly correlated with both the Observational Gait Scale scores (R = 0.79, P < 0.005) and clinical measurements of dorsiflexion on a fast stretch, which is reflective of spasticity (R = 0.70, P < 0.005). We demonstrated the index's sensitivity in detecting changes in spasticity and good correlation with video observations seems to indicate this technique's potential validity. When manipulated and segmented appropriately, and with the development of a simple ordinal index, we found that foot pressure data provided a useful tool in tracking changes in patients with spastic equinus.
Resumo:
Chemical shifts of protons can report on metabolic transformations such as the conversion of choline to phosphocholine. To follow such processes in vivo, magnetization can be enhanced by dynamic nuclear polarization (DNP). We have hyperpolarized in this manner nitrogen-15 spins in (15)N-labeled choline up to 3.3% by irradiating the 94 GHz electron spin resonance of admixed TEMPO nitroxide radicals in a magnetic field of 3.35 T during ca. 3 h at 1.2 K. The sample was subsequently transferred to a high-resolution magnet, and the enhanced polarization was converted from (15)N to methyl- and methylene protons, using the small (2,3)J((1)H,(15)N) couplings in choline. The room-temperature lifetime of nitrogen polarization in choline, T(1)((15)N) approximately 200 s, could be considerably increased by partial deuteration of the molecule. This procedure enables studies of choline metabolites in vitro and in vivo using DNP-enhanced proton NMR.
Resumo:
Introduction This dissertation consists of three essays in equilibrium asset pricing. The first chapter studies the asset pricing implications of a general equilibrium model in which real investment is reversible at a cost. Firms face higher costs in contracting than in expanding their capital stock and decide to invest when their productive capital is scarce relative to the overall capital of the economy. Positive shocks to the capital of the firm increase the size of the firm and reduce the value of growth options. As a result, the firm is burdened with more unproductive capital and its value lowers with respect to the accumulated capital. The optimal consumption policy alters the optimal allocation of resources and affects firm's value, generating mean-reverting dynamics for the M/B ratios. The model (1) captures convergence of price-to-book ratios -negative for growth stocks and positive for value stocks - (firm migration), (2) generates deviations from the classic CAPM in line with the cross-sectional variation in expected stock returns and (3) generates a non-monotone relationship between Tobin's q and conditional volatility consistent with the empirical evidence. The second chapter proposes a standard portfolio-choice problem with transaction costs and mean reversion in expected returns. In the presence of transactions costs, no matter how small, arbitrage activity does not necessarily render equal all riskless rates of return. When two such rates follow stochastic processes, it is not optimal immediately to arbitrage out any discrepancy that arises between them. The reason is that immediate arbitrage would induce a definite expenditure of transactions costs whereas, without arbitrage intervention, there exists some, perhaps sufficient, probability that these two interest rates will come back together without any costs having been incurred. Hence, one can surmise that at equilibrium the financial market will permit the coexistence of two riskless rates that are not equal to each other. For analogous reasons, randomly fluctuating expected rates of return on risky assets will be allowed to differ even after correction for risk, leading to important violations of the Capital Asset Pricing Model. The combination of randomness in expected rates of return and proportional transactions costs is a serious blow to existing frictionless pricing models. Finally, in the last chapter I propose a two-countries two-goods general equilibrium economy with uncertainty about the fundamentals' growth rates to study the joint behavior of equity volatilities and correlation at the business cycle frequency. I assume that dividend growth rates jump from one state to other, while countries' switches are possibly correlated. The model is solved in closed-form and the analytical expressions for stock prices are reported. When calibrated to the empirical data of United States and United Kingdom, the results show that, given the existing degree of synchronization across these business cycles, the model captures quite well the historical patterns of stock return volatilities. Moreover, I can explain the time behavior of the correlation, but exclusively under the assumption of a global business cycle.
Resumo:
INTRODUCTION: There is a trend towards surgical treatment of acute ruptured Achilles tendon. While classical open surgical procedures have been shown to restore good functional capacity, they are potentially associated with significant complications like wound infection and paresthesia. Modern mini-invasive surgical techniques significantly reduce these complications and are also associated with good functional results so that they can be considered as the surgical treatment of choice. Nevertheless, there is still a need for conservative alternative and recent studies report good results with conservative treatment in rigid casts or braces. PATIENTS/METHOD: We report the use of a dynamic ankle brace in the conservative treatment of Achilles tendon rupture in a prospective non-randomised study of 57 consecutive patients. Patients were evaluated at an average follow-up time of 5 years using the modified Leppilahti Ankle Score, and the first 30 patients additionally underwent a clinical examination and muscular testing with a Cybex isokinetic dynamometer at 6 and 12 months. RESULTS: We found good and excellent results in most cases. We observed five complete re-ruptures, almost exclusively in case of poor patient's compliance, two partial re-ruptures and one deep venous thrombosis complicated by pulmonary embolism. CONCLUSION: Although prospective comparison with other modern treatment options is still required, the functional outcome after early ankle mobilisation in a dynamic cast is good enough to ethically propose this method as an alternative to surgical treatment.
Resumo:
In dynamic models of energy allocation, assimilated energy is allocated to reproduction, somatic growth, maintenance or storage, and the allocation pattern can change with age. The expected evolutionary outcome is an optimal allocation pattern, but this depends on the environment experienced during the evolutionary process and on the fitness costs and benefits incurred by allocating resources in different ways. Here we review existing treatments which encompass some of the possibilities as regards constant or variable environments and their predictability or unpredictability, and the ways in which production rates and mortality rates depend on body size and composition and age and on the pattern of energy allocation. The optimal policy is to allocate resources where selection pressures are highest, and simultaneous allocation to several body subsystems and reproduction can be optimal if these pressures are equal. This may explain balanced growth commonly observed during ontogeny. Growth ceases at maturity in many models; factors favouring growth after maturity include non-linear trade-offs, variable season length, and production and mortality rates both increasing (or decreasing) functions of body size. We cannot yet say whether these are sufficient to account for the many known cases of growth after maturity and not all reasonable models have yet been explored. Factors favouring storage are also reviewed.
Resumo:
quantiNemo is an individual-based, genetically explicit stochastic simulation program. It was developed to investigate the effects of selection, mutation, recombination and drift on quantitative traits with varying architectures in structured populations connected by migration and located in a heterogeneous habitat. quantiNemo is highly flexible at various levels: population, selection, trait(s) architecture, genetic map for QTL and/or markers, environment, demography, mating system, etc. quantiNemo is coded in C++ using an object-oriented approach and runs on any computer platform. Availability: Executables for several platforms, user's manual, and source code are freely available under the GNU General Public License at http://www2.unil.ch/popgen/softwares/quantinemo.
Resumo:
The assimilation model is a qualitative and integrative approach that enables to study change processes that occur in psychotherapy. According to Stiles, this model conceives the individual's personality as constituent of different voices; the concept of voice is used to describe traces left by past experiences. During the psychotherapy, we can observe the progressive integration of the problematic voices into the patient's personality. We applied the assimilation model to a 34-session-long case of an effective short-term dynamic psychotherapy. We've chosen eight sessions we transcribed and analyzed by establishing points of contact between the case and the theory. The results are presented and discussed in terms of the evolution of the main voices in the patient.
Resumo:
Working memory, commonly defined as the ability to hold mental representations on line transiently and to manipulate these representations, is known to be a core deficit in schizophrenia. The aim of the present study was to investigate the visuo-spatial component of the working memory in schizophrenia, and more precisely to what extent the dynamic visuo-spatial information processing is impaired in schizophrenia patients. For this purpose we used a computerized paradigm in which 29 patients with schizophrenia (DSMIV, Diagnostic Interview for Genetic Studies) and 29 age and sex matched control subjects (DIGS) had to memorize a plane moving across the computer screen and to identify the observed trajectory among 9 plots proposed together. Each trajectory could be seen max. 3 times if needed. The results showed no difference between schizophrenia patients and controls regarding the number of correct trajectory identified after the first presentation. However, when we determine the mean number of correct trajectories on the basis of 3 trials, we observed that schizophrenia patients are significantly less performant than controls (Mann-Whitney, p _ 0.002). These findings suggest that, although schizophrenia patients are able to memorize some dynamic trajectories as well as controls, they do not profit from the repetition of the trajectory presentation. These findings are congruent with the hypothesis that schizophrenia could induce an unbalance between local and global information processing: the patients may be able to focus on details of the trajectory which could allow them to find the right target (bottom-up processes), but may show difficulty to refer to previous experience in order to filter incoming information (top-down processes) and enhance their visuo-spatial working memory abilities.
Resumo:
Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.
Resumo:
Emotion regulation is crucial for successfully engaging in social interactions. Yet, little is known about the neural mechanisms controlling behavioral responses to emotional expressions perceived in the face of other people, which constitute a key element of interpersonal communication. Here, we investigated brain systems involved in social emotion perception and regulation, using functional magnetic resonance imaging (fMRI) in 20 healthy participants. The latter saw dynamic facial expressions of either happiness or sadness, and were asked to either imitate the expression or to suppress any expression on their own face (in addition to a gender judgment control task). fMRI results revealed higher activity in regions associated with emotion (e.g., the insula), motor function (e.g., motor cortex), and theory of mind (e.g., [pre]cuneus) during imitation. Activity in dorsal cingulate cortex was also increased during imitation, possibly reflecting greater action monitoring or conflict with own feeling states. In addition, premotor regions were more strongly activated during both imitation and suppression, suggesting a recruitment of motor control for both the production and inhibition of emotion expressions. Expressive suppression (eSUP) produced increases in dorsolateral and lateral prefrontal cortex typically related to cognitive control. These results suggest that voluntary imitation and eSUP modulate brain responses to emotional signals perceived from faces, by up- and down-regulating activity in distributed subcortical and cortical networks that are particularly involved in emotion, action monitoring, and cognitive control.