152 resultados para Digital Identity
Resumo:
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.
Resumo:
Fully differentiated pancreatic β cells are essential for normal glucose homeostasis in mammals. Dedifferentiation of these cells has been suggested to occur in type 2 diabetes, impairing insulin production. Since chronic fuel excess ("glucotoxicity") is implicated in this process, we sought here to identify the potential roles in β-cell identity of the tumor suppressor liver kinase B1 (LKB1/STK11) and the downstream fuel-sensitive kinase, AMP-activated protein kinase (AMPK). Highly β-cell-restricted deletion of each kinase in mice, using an Ins1-controlled Cre, was therefore followed by physiological, morphometric, and massive parallel sequencing analysis. Loss of LKB1 strikingly (2.0-12-fold, E<0.01) increased the expression of subsets of hepatic (Alb, Iyd, Elovl2) and neuronal (Nptx2, Dlgap2, Cartpt, Pdyn) genes, enhancing glutamate signaling. These changes were partially recapitulated by the loss of AMPK, which also up-regulated β-cell "disallowed" genes (Slc16a1, Ldha, Mgst1, Pdgfra) 1.8- to 3.4-fold (E<0.01). Correspondingly, targeted promoters were enriched for neuronal (Zfp206; P=1.3×10(-33)) and hypoxia-regulated (HIF1; P=2.5×10(-16)) transcription factors. In summary, LKB1 and AMPK, through only partly overlapping mechanisms, maintain β-cell identity by suppressing alternate pathways leading to neuronal, hepatic, and other characteristics. Selective targeting of these enzymes may provide a new approach to maintaining β-cell function in some forms of diabetes.-Kone, M., Pullen, T. J., Sun, G., Ibberson, M., Martinez-Sanchez, A., Sayers, S., Nguyen-Tu, M.-S., Kantor, C., Swisa, A., Dor, Y., Gorman, T., Ferrer, J., Thorens, B., Reimann, F., Gribble, F., McGinty, J. A., Chen, L., French, P. M., Birzele, F., Hildebrandt, T., Uphues, I., Rutter, G. A. LKB1 and AMPK differentially regulate pancreatic β-cell identity.
Resumo:
ABSTRACT. A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.
Resumo:
The human melanoma-associated antigen identified by the monoclonal antibody (mAb) Me14-D12 is a cell surface protein whose expression is induced by interferon-gamma (IFN-gamma). We have recently reported the molecular cloning of a genomic probe specific for the gene and mRNA of this protein. By screening with the genomic probe, we have now isolated a full length 3.0 kb cDNA from a Raji cell line-derived lambda-gt10 library. Sequence analysis of this cDNA showed a 99.8% homology with the intercellular adhesion molecule-1 (ICAM-1). Mouse Ltk- cells stably transfected with the human cDNA clone were found to express the ICAM-1 antigenic determinants detected by mAb Me14-D12 and a reference anti-ICAM-1 mAb, as judged by surface immunofluorescence. Immunoprecipitation of surface-iodinated proteins with mAb Me14-D12 revealed the presence of a 90 kD molecule with identical mobility to ICAM-1. In addition, mAb Me14-D12 could inhibit the phorbolester-stimulated aggregation of U937 cells. The findings show that the human melanoma-associated Me14-D12 antigen is the adhesion molecule ICAM-1.
Resumo:
A key, yet often neglected, component of digital evolution and evolutionary models is the 'selection method' which assigns fitness (number of offspring) to individuals based on their performance scores (efficiency in performing tasks). Here, we study with formal analysis and numerical experiments the evolution of cooperation under the five most common selection methods (proportionate, rank, truncation-proportionate, truncation-uniform and tournament). We consider related individuals engaging in a Prisoner's Dilemma game where individuals can either cooperate or defect. A cooperator pays a cost, whereas its partner receives a benefit, which affect their performance scores. These performance scores are translated into fitness by one of the five selection methods. We show that cooperation is positively associated with the relatedness between individuals under all selection methods. By contrast, the change in the performance benefit of cooperation affects the populations' average level of cooperation only under the proportionate methods. We also demonstrate that the truncation and tournament methods may introduce negative frequency-dependence and lead to the evolution of polymorphic populations. Using the example of the evolution of cooperation, we show that the choice of selection method, though it is often marginalized, can considerably affect the evolutionary dynamics.
Resumo:
Red blood cell (RBC) membrane fluctuations provide important insights into cell states. We present a spatial analysis of red blood cell membrane fluctuations by using digital holographic microscopy (DHM). This interferometric and dye-free technique, possessing nanometric axial and microsecond temporal sensitivities enables to measure cell membrane fluctuations (CMF) on the whole cell surface. DHM acquisition is combined with a model which allows extracting the membrane fluctuation amplitude, while taking into account cell membrane topology. Uneven distribution of CMF amplitudes over the RBC surface is observed, showing maximal values in a ring corresponding to the highest points on the RBC torus as well as in some scattered areas in the inner region of the RBC. CMF amplitudes of 35.9+/-8.9 nm and 4.7+/-0.5 nm (averaged over the cell surface) were determined for normal and ethanol-fixed RBCs, respectively.
Resumo:
We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.
Resumo:
The identity [r]evolution is happening. Who are you, who am I in the information society? In recent years, the convergence of several factors - technological, political, economic - has accelerated a fundamental change in our networked world. On a technological level, information becomes easier to gather, to store, to exchange and to process. The belief that more information brings more security has been a strong political driver to promote information gathering since September 11. Profiling intends to transform information into knowledge in order to anticipate one's behaviour, or needs, or preferences. It can lead to categorizations according to some specific risk criteria, for example, or to direct and personalized marketing. As a consequence, new forms of identities appear. They are not necessarily related to our names anymore. They are based on information, on traces that we leave when we act or interact, when we go somewhere or just stay in one place, or even sometimes when we make a choice. They are related to the SIM cards of our mobile phones, to our credit card numbers, to the pseudonyms that we use on the Internet, to our email addresses, to the IP addresses of our computers, to our profiles... Like traditional identities, these new forms of identities can allow us to distinguish an individual within a group of people, or describe this person as belonging to a community or a category. How far have we moved through this process? The identity [r]evolution is already becoming part of our daily lives. People are eager to share information with their "friends" in social networks like Facebook, in chat rooms, or in Second Life. Customers take advantage of the numerous bonus cards that are made available. Video surveillance is becoming the rule. In several countries, traditional ID documents are being replaced by biometric passports with RFID technologies. This raises several privacy issues and might actually even result in changing the perception of the concept of privacy itself, in particular by the younger generation. In the information society, our (partial) identities become the illusory masks that we choose -or that we are assigned- to interplay and communicate with each other. Rights, obligations, responsibilities, even reputation are increasingly associated with these masks. On the one hand, these masks become the key to access restricted information and to use services. On the other hand, in case of a fraud or negative reputation, the owner of such a mask can be penalized: doors remain closed, access to services is denied. Hence the current preoccupying growth of impersonation, identity-theft and other identity-related crimes. Where is the path of the identity [r]evolution leading us? The booklet is giving a glance on possible scenarios in the field of identity.
Resumo:
Summary Detection, analysis and monitoring of slope movements by high-resolution digital elevation modelsSlope movements, such as rockfalls, rockslides, shallow landslides or debris flows, are frequent in many mountainous areas. These natural hazards endanger the inhabitants and infrastructures making it necessary to assess the hazard and risk caused by these phenomena. This PhD thesis explores various approaches using digital elevation models (DEMs) - and particularly high-resolution DEMs created by aerial or terrestrial laser scanning (TLS) - that contribute to the assessment of slope movement hazard at regional and local scales.The regional detection of areas prone to rockfalls and large rockslides uses different morphologic criteria or geometric instability factors derived from DEMs, i.e. the steepness of the slope, the presence of discontinuities, which enable a sliding mechanism, and the denudation potential. The combination of these factors leads to a map of susceptibility to rockfall initiation that is in good agreement with field studies as shown with the example of the Little Mill Campground area (Utah, USA). Another case study in the Illgraben catchment in the Swiss Alps highlighted the link between areas with a high denudation potential and actual rockfall areas.Techniques for a detailed analysis and characterization of slope movements based on high-resolution DEMs have been developed for specific, localized sites, i.e. ancient slide scars, present active instabilities or potential slope instabilities. The analysis of the site's characteristics mainly focuses on rock slopes and includes structural analyses (orientation of discontinuities); estimation of spacing, persistence and roughness of discontinuities; failure mechanisms based on the structural setting; and volume calculations. For the volume estimation a new 3D approach was tested to reconstruct the topography before a landslide or to construct the basal failure surface of an active or potential instability. The rockslides at Åknes, Tafjord and Rundefjellet in western Norway were principally used as study sites to develop and test the different techniques.The monitoring of slope instabilities investigated in this PhD thesis is essentially based on multitemporal (or sequential) high-resolution DEMs, in particular sequential point clouds acquired by TLS. The changes in the topography due to slope movements can be detected and quantified by sequential TLS datasets, notably by shortest distance comparisons revealing the 3D slope movements over the entire region of interest. A detailed analysis of rock slope movements is based on the affine transformation between an initial and a final state of the rock mass and its decomposition into translational and rotational movements. Monitoring using TLS was very successful on the fast-moving Eiger rockslide in the Swiss Alps, but also on the active rockslides of Åknes and Nordnesfjellet (northern Norway). One of the main achievements on the Eiger and Aknes rockslides is to combine the site's morphology and structural setting with the measured slope movements to produce coherent instability models. Both case studies also highlighted a strong control of the structures in the rock mass on the sliding directions. TLS was also used to monitor slope movements in soils, such as landslides in sensitive clays in Québec (Canada), shallow landslides on river banks (Sorge River, Switzerland) and a debris flow channel (Illgraben).The PhD thesis underlines the broad uses of high-resolution DEMs and especially of TLS in the detection, analysis and monitoring of slope movements. Future studies should explore in more depth the different techniques and approaches developed and used in this PhD, improve them and better integrate the findings in current hazard assessment practices and in slope stability models.Résumé Détection, analyse et surveillance de mouvements de versant à l'aide de modèles numériques de terrain de haute résolutionDes mouvements de versant, tels que des chutes de blocs, glissements de terrain ou laves torrentielles, sont fréquents dans des régions montagneuses et mettent en danger les habitants et les infrastructures ce qui rend nécessaire d'évaluer le danger et le risque causé par ces phénomènes naturels. Ce travail de thèse explore diverses approches qui utilisent des modèles numériques de terrain (MNT) et surtout des MNT de haute résolution créés par scanner laser terrestre (SLT) ou aérien - et qui contribuent à l'évaluation du danger de mouvements de versant à l'échelle régionale et locale.La détection régionale de zones propices aux chutes de blocs ou aux éboulements utilise plusieurs critères morphologiques dérivés d'un MNT, tels que la pente, la présence de discontinuités qui permettent un mécanisme de glissement ou le potentiel de dénudation. La combinaison de ces facteurs d'instabilité mène vers une carte de susceptibilité aux chutes de blocs qui est en accord avec des travaux de terrain comme démontré avec l'exemple du Little Mill Campground (Utah, États-Unis). Un autre cas d'étude - l'Illgraben dans les Alpes valaisannes - a mis en évidence le lien entre les zones à fort potentiel de dénudation et les sources effectives de chutes de blocs et d'éboulements.Des techniques pour l'analyse et la caractérisation détaillée de mouvements de versant basées sur des MNT de haute résolution ont été développées pour des sites spécifiques et localisés, comme par exemple des cicatrices d'anciens éboulements et des instabilités actives ou potentielles. Cette analyse se focalise principalement sur des pentes rocheuses et comprend l'analyse structurale (orientation des discontinuités); l'estimation de l'espacement, la persistance et la rugosité des discontinuités; l'établissement des mécanismes de rupture; et le calcul de volumes. Pour cela une nouvelle approche a été testée en rétablissant la topographie antérieure au glissement ou en construisant la surface de rupture d'instabilités actuelles ou potentielles. Les glissements rocheux d'Åknes, Tafjord et Rundefjellet en Norvège ont été surtout utilisés comme cas d'étude pour développer et tester les diverses approches. La surveillance d'instabilités de versant effectuée dans cette thèse de doctorat est essentiellement basée sur des MNT de haute résolution multi-temporels (ou séquentiels), en particulier des nuages de points séquentiels acquis par SLT. Les changements topographiques dus aux mouvements de versant peuvent être détectés et quantifiés sur l'ensemble d'un glissement, notamment par comparaisons des distances les plus courtes entre deux nuages de points. L'analyse détaillée des mouvements est basée sur la transformation affine entre la position initiale et finale d'un bloc et sa décomposition en mouvements translationnels et rotationnels. La surveillance par SLT a démontré son potentiel avec l'effondrement d'un pan de l'Eiger dans les Alpes suisses, mais aussi aux glissements rocheux d'Aknes et Nordnesfjellet en Norvège. Une des principales avancées à l'Eiger et à Aknes est la création de modèles d'instabilité cohérents en combinant la morphologie et l'agencement structural des sites avec les mesures de déplacements. Ces deux cas d'étude ont aussi démontré le fort contrôle des structures existantes dans le massif rocheux sur les directions de glissement. Le SLT a également été utilisé pour surveiller des glissements dans des terrains meubles comme dans les argiles sensibles au Québec (Canada), sur les berges de la rivière Sorge en Suisse et dans le chenal à laves torrentielles de l'Illgraben.Cette thèse de doctorat souligne le vaste champ d'applications des MNT de haute résolution et particulièrement du SLT dans la détection, l'analyse et la surveillance des mouvements de versant. Des études futures devraient explorer plus en profondeur les différentes techniques et approches développées, les améliorer et mieux les intégrer dans des pratiques actuelles d'analyse de danger et surtout dans la modélisation de stabilité des versants.
Resumo:
The authors have developed a live-cell multimodality microscope combining epifluorescence with digital holographic microscopy; it has been implemented with a decoupling procedure allowing to separately measure from the quantitative phase important cell parameters including absolute volume, shape and integral intracellular refractive index. In combination with the numerous different specific fluorescent cellular probes, this multimodality microscopy can address important issues in cell biology. This is demonstrated by the study of intracellular calcium homeostasis associated with the change in cell volume, which play a critical role in the excitotoxicity-induced neuronal death.
Resumo:
False identity documents constitute a potential powerful source of forensic intelligence because they are essential elements of transnational crime and provide cover for organized crime. In previous work, a systematic profiling method using false documents' visual features has been built within a forensic intelligence model. In the current study, the comparison process and metrics lying at the heart of this profiling method are described and evaluated. This evaluation takes advantage of 347 false identity documents of four different types seized in two countries whose sources were known to be common or different (following police investigations and dismantling of counterfeit factories). Intra-source and inter-sources variations were evaluated through the computation of more than 7500 similarity scores. The profiling method could thus be validated and its performance assessed using two complementary approaches to measuring type I and type II error rates: a binary classification and the computation of likelihood ratios. Very low error rates were measured across the four document types, demonstrating the validity and robustness of the method to link documents to a common source or to differentiate them. These results pave the way for an operational implementation of a systematic profiling process integrated in a developed forensic intelligence model.
Resumo:
We present state-of-the-art dual-wavelength digital holographic microscopy (DHM) measurement on a calibrated 8.9 nm high chromium thin step sample and demonstrate sub-nanometer axial accuracy. By using a modified DHM reference calibrated hologram (RCH) reconstruction method, a temporal averaging procedure and a specific dual-wavelength DHM arrangement, it is shown that specimen topography can be measured with an accuracy, defined as the axial standard deviation, reduced to at least 0.9 nm. Indeed for the first time to the best of our knowledge, it is reported that averaging each of the two wavefronts recorded with real-time dual-wavelength DHM can provide up to 30% spatial noise reduction for the given configuration. Moreover, the presented experimental configuration achieves a temporal stability below 0.8 nm, thus paving the way to Angström range for dual-wavelength DHM.