145 resultados para Delayed differential equation
Resumo:
Secondary contact zones have the potential to shed light on the mode and rate at which reproductive isolation accumulates during allopatric speciation. We investigated the population genetics of a contact zone between two highly divergent lineages of field voles (Microtus agrestis) in the Swiss Jura mountains. To shed light on the processes underlying introgression, we used maternally, paternally, and bi-parentally inherited markers. Though the two lineages maintained a strong genetic structure, we found some hybrids and evidence of gene flow. The extent of introgression varied with the mode of inheritance, being highest for mtDNA and absent for the Y chromosome. In addition, introgression was asymmetric, occurring only from the Northern to the Southern lineage. Both patterns seem parsimoniously explained by neutral processes linked to differences in effective sizes and sex-biased dispersal rates. The lineage with lower effective population size was also the more introgressed, and the mode-of-inheritance effect correlated with the male-biased dispersal rate of microtine rodents. We cannot exclude, however, that Haldane's effect contributed to the latter, as we found a marginally significant deficit in males (the heterogametic sex) among hybrids. We propose a possible demographic scenario to account for the patterns documented, and empirical extensions to further investigate this contact zone.
Resumo:
In vitro studies suggested that sub-millisecond pulses of radiation elicit less genomic instability than continuous, protracted irradiation at the same total dose. To determine the potential of ultrahigh dose-rate irradiation in radiotherapy, we investigated lung fibrogenesis in C57BL/6J mice exposed either to short pulses (≤ 500 ms) of radiation delivered at ultrahigh dose rate (≥ 40 Gy/s, FLASH) or to conventional dose-rate irradiation (≤ 0.03 Gy/s, CONV) in single doses. The growth of human HBCx-12A and HEp-2 tumor xenografts in nude mice and syngeneic TC-1 Luc(+) orthotopic lung tumors in C57BL/6J mice was monitored under similar radiation conditions. CONV (15 Gy) triggered lung fibrosis associated with activation of the TGF-β (transforming growth factor-β) cascade, whereas no complications developed after doses of FLASH below 20 Gy for more than 36 weeks after irradiation. FLASH irradiation also spared normal smooth muscle and epithelial cells from acute radiation-induced apoptosis, which could be reinduced by administration of systemic TNF-α (tumor necrosis factor-α) before irradiation. In contrast, FLASH was as efficient as CONV in the repression of tumor growth. Together, these results suggest that FLASH radiotherapy might allow complete eradication of lung tumors and reduce the occurrence and severity of early and late complications affecting normal tissue.
Resumo:
ABSTRACT: In sexual assault cases, autosomal DNA analysis of gynecological swabs is a challenge, as the presence of a large quantity of female material may prevent the detection of the male DNA. A solution to this problem is differential DNA extraction, but as there are different protocols, it was decided to test their efficiency on simulated casework samples. Four difficult samples were sent to the nine Swiss laboratories active in the forensic genetics. They used their routine protocols to separate the epithelial cell fraction, enriched with the non-sperm DNA, from the sperm fraction. DNA extracts were then sent to the organizing laboratory for analysis. Estimates of male to female DNA ratio without differential DNA extraction ranged from 1:38 to 1:339, depending on the semen used to prepare the samples. After differential DNA extraction, most of the ratios ranged from 1:12 to 9:1, allowing the detection of the male DNA. Compared to direct DNA extraction, cell separation resulted in losses of 94-98% of the male DNA. As expected, more male DNA was generally present in the sperm than in the epithelial cell fraction. However, for about 30% of the samples, the reverse trend was observed. The recovery of male and female DNA was highly variable depending on the laboratories. Experimental design similar to the one used in this study may help for local protocol testing and improvement.
Resumo:
PURPOSE: Poly(epsilon-caprolactone) (PCL) is a biodegradable and biocompatible polymer that presents a very low degradation rate, making it suitable for the development of long-term drug delivery systems. The objective of this pilot study is to evaluate the feasibility and characteristics of PCL devices in the prolonged and controlled intravitreous release of dexamethasone. METHODS: The in vitro release of dexamethasone was investigated and the implant degradation was monitored by the percent of mass loss and by changes in the surface morphology. Differential scanning calorimetry was used to evaluate stability and interaction of the implant and the drug. The short-term tolerance of the implants was studied after intravitreous implantation in rabbit eye. Results: PCL implant allows for a controlled and prolonged delivery of dexamethasone since it releases 25% of the drug in 21 weeks. Its low degradation rate was confirmed by the mass loss and scanning electron microscopy studies. Preliminary observations show that PCL intravitreous implants are very well tolerated in the rabbit eye. CONCLUSION: This study demonstrates the PCL drug delivery systems allowed to a prolonged release of dexamethasone in vitro. The implants demonstrated a strikingly good intraocular short-term tolerance in rabbits eyes. The in vitro and preliminary in vivo studies tend to show that PCL implants could be of interest when long-term sustained intraocular delivery of corticosteroids is required.
Resumo:
The values of the life history parameters expressed in the Lotka's equation were measured in the experimental conditions (20ºC, food ad libitum) for the aquatic pumonate Physa acuta. The estimated fitness value allows the population to double in about 4 weeks. The life cycle is very short (about 3 times shorter than for Lymnaea peregra in similar conditions) because of the important relative size of the eggs, a very high growth rate and an early maturity. This kind of strategy seems adaptive in eutrophic and temporary pools, where the adult mortality is important and density-independant. While the longevity shows very poor correlations with all other parameters, adult size, age at maturity and fecundity are strongly correlated. Structural and functionnal interpetations of these correlations are proposed. A mixed strategy seems a good hypothesis for this usually bivoltine species: the little-size, early-maturity and high-fecondity strategy may be selected during the summer, and the big-size, delayed-maturity and poor fecundity strategy during the winter
Resumo:
Microtubule-associated protein 1b, previously also referred to as microtubule-associated protein 5 or microtubule-associated protein 1x, is a major component of the juvenile cytoskeleton, and is essential during the early differentiation of neurons. It is required for axonal growth and its function is influenced by phosphorylation. The distribution of microtubule-associated protein 1b in kitten cerebellum and cortex during postnatal development was studied with two monoclonal antibodies. Hybridoma clone AA6 detected a non-phosphorylated site, while clone 125 detected a site phosphorylated by casein-kinase II. On blots, both monoclonal antibodies stained the same two proteins of similar molecular weights, also referred to as microtubule-associated protein 5a and 5b. Antibody 125 detected a phosphorylated epitope on both microtubule-associated protein 1b forms; dephosphorylation by alkaline phosphatase abolished the immunological detection. During development of cat cortex and cerebellum, AA6 stained the perikarya and dendrites of neurons during their early differentiation, and especially labelled newly generated axons. The staining decreased during development, and axonal staining was reduced in adult tissue. In contrast to previous reports which demonstrated that antibodies against phosphorylated microtubule-associated protein 1b label exclusively axons, antibody 125 also localized microtubule-associated protein 1b in cell bodies and dendrites, even in adulthood. Some nuclear staining was observed, indicating that a phosphorylated form of microtubule-associated protein 1b may participate in nuclear function. These results demonstrate that microtubule-associated protein 1b is subject to CK2-type phosphorylation throughout neuronal maturation and suggest that phosphorylation of microtubule-associated protein 1b may participate in juvenile and mature-type microtubule functions throughout development.
Resumo:
The interpretation of the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all crossloadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores.
Resumo:
Astrocytes are responsible for regulating extracellular levels of glutamate and potassium during neuronal activity. Glutamate clearance is handled by glutamate transporter subtypes glutamate transporter 1 and glutamate-aspartate transporter in astrocytes. DL-threo-beta-benzyloxyaspartate (TBOA) and dihydrokainate (DHK) are extensively used as inhibitors of glial glutamate transport activity. Using whole-cell recordings, we characterized the effects of both transporter inhibitors on afferent-evoked astrocyte currents in acute cortical slices of 3-week-old rats. When neuronal afferents were stimulated, passive astrocytes responded by a rapid inward current followed by a persistent tail current. The first current corresponded to a glutamate transporter current. This current was inhibited by both inhibitors and by tetrodotoxin. The tail current is an inward potassium current as it was blocked by barium. Besides inhibiting transporter currents, TBOA strongly enhanced the tail current. This effect was barium-sensitive and might be due to a rise in extracellular potassium level and increased glial potassium uptake. Unlike TBOA, DHK did not enhance the tail current but rather inhibited it. This result suggests that, in addition to inhibiting glutamate transport, DHK prevents astrocyte potassium uptake, possibly by blockade of inward-rectifier channels. This study revealed that, in brain slices, glutamate transporter inhibitors exert complex effects that cannot be attributed solely to glutamate transport inhibition.
Resumo:
QUESTIONS UNDER STUDY/PRINCIPLES: After arterial ischemic stroke (AIS) an early diagnosis helps preserve treatment options that are no longer available later. Paediatric AIS is difficult to diagnose and often the time to diagnosis exceeds the time window of 6 hours defined for thrombolysis in adults. We investigated the delay from the onset of symptoms to AIS diagnosis in children and potential contributing factors. METHODS: We included children with AIS below 16 years from the population-based Swiss Neuropaediatric Stroke Registry (2000-2006). We evaluated the time between initial medical evaluation for stroke signs/symptoms and diagnosis, risk factors, co-morbidities and imaging findings. RESULTS: A total of 91 children (61 boys), with a median age of 5.3 years (range: 0.2-16.2), were included. The time to diagnosis (by neuro-imaging) was <6 hours in 32 (35%), 6-12 hours in 23 (25%), 12-24 hours in 15 (16%) and >24 hours in 21 (23%) children. Of 74 children not hospitalised when the stroke occurred, 42% had adequate outpatient management. Delays in diagnosis were attributed to: parents/caregivers (n = 20), physicians of first referral (n = 5) and tertiary care hospitals (n = 8). A co-morbidity hindered timely diagnosis in eight children. No other factors were associated with delay to diagnosis. A total of 17 children were inpatients at AIS onset. CONCLUSIONS: One-third of children with AIS were diagnosed within six hours. Diagnostic delay was predominately caused by insufficient recognition of stroke symptoms. Increased public and expert awareness and immediate access to diagnostic imaging are essential. The ability of parents/caregivers and health professionals to recognise stroke symptoms in a child needs to be improved.
Resumo:
The arenaviruses are an important family of emerging viruses that includes several causative agents of severe hemorrhagic fevers in humans that represent serious public health problems. A crucial step of the arenavirus life cycle is maturation of the envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). Comparison of the currently known sequences of arenavirus GPCs revealed the presence of a highly conserved aromatic residue at position P7 relative to the SKI-1/S1P cleavage side in Old World and clade C New World arenaviruses but not in New World viruses of clades A and B or cellular substrates of SKI-1/S1P. Using a combination of molecular modeling and structure-function analysis, we found that residueY285 of SKI-1/S1P, distal from the catalytic triad, is implicated in the molecular recognition of the aromatic "signature residue" at P7 in the GPC of Old World Lassa virus. Using a quantitative biochemical approach, we show that Y285 of SKI-1/S1P is crucial for the efficient processing of peptides derived from Old World and clade C New World arenavirus GPCs but not of those from clade A and B New World arenavirus GPCs. The data suggest that during coevolution with their mammalian hosts, GPCs of Old World and clade C New World viruses expanded the molecular contacts with SKI-1/S1P beyond the classical four-amino-acid recognition sequences and currently occupy an extended binding pocket.
Resumo:
Engineering of fetal tissue has a high potential for the treatment of acute and chronic wounds of the skin in humans as these cells have high expansion capacity under simple culture conditions and one organ donation can produce Master Cell Banks which can fabricate over 900 million biological bandages (9 x 12cm). In a Phase 1 clinical safety study, cases are presented for the treatment of therapy resistant leg ulcers. All eight patients, representing 13 ulcers, tolerated multiple treatments with fetal biological bandages showing no negative secondary effects and repair processes similar to that seen in 3rd degree burns. Differential gene profiling using Affymetrix gene chips (analyzing 12,500 genes) were accomplished on these banked fetal dermal skin cells compared to banked dermal skin cells of an aged donor in order to point to potential indicators of wound healing. Families of genes involved in cell adhesion and extracellular matrix, cell cycle, cellular signaling, development and immune response show significant differences in regulation between banked fetal and those from banked old skin cells: with approximately 47.0% of genes over-expressed in fetal fibroblasts. It is perhaps these differences which contribute to efficient tissue repair seen in the clinic with fetal cell therapy.
Resumo:
Delayed-choice experiments in quantum mechanics are often taken to undermine a realistic interpretation of the quantum state. More specifically, Healey has recently argued that the phenomenon of delayed-choice entanglement swapping is incompatible with the view that entanglement is a physical relation between quantum systems. This paper argues against these claims. It first reviews two paradigmatic delayed-choice experiments and analyzes their metaphysical implications. It then applies the results of this analysis to the case of entanglement swapping, showing that such experiments pose no threat to realism about entanglement.