297 resultados para DELTA-OPIOID RECEPTORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : GABA, the primary inhibitory neurotransmitter, and its receptors play an important role in modulating neuronal activity in the central nervous system and are implicated in many neurological disorders. In this study, GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas TC (= primary auditory area), TB, and TA. Both hemispheres from nine neurologically normal subjects and from four patients with subacute or chronic stroke were included. In normal brains, GABAA receptor subunit (α1, α2, & β2/3) labeling produced neuropil staining throughout all cortical layers as well as labeling fibers and neurons in layer VI for all auditory areas. Densitometry profiles displayed differences in GABAA subunit expression between primary and non-primary areas. In contrast to the neuropil labeling of GABAA subunits, GABAB1 and GABAB2 subunit immunoreactivity was revealed on neuronal somata and proximal dendritic shafts of pyramidal and non-pyramidal neurons in layers II-III, more strongly on supra- than in infragranular layers. No differences were observed between auditory areas. In stroke cases, we observed a downregulation of the GABAA receptor α2 subunit in granular and infragranular layers, while the other GABAA and the two GABAB receptor subunits remained unchanged. Our results demonstrate a strong presence of GABAA and GABAB receptors in the human auditory cortex, suggesting a crucial role of GABA in shaping auditory responses in the primary and non-primary auditory areas. The differential laminar and area expression of GABAA subunits that we have found in the auditory areas and which is partially different from that in other cortical areas speaks in favor of a fine turning of GABA-ergic transmission in these different compartments. In contrast, GABAB expression displayed laminar, but not areal differences; its basic pattern was also very similar to that of other cortical areas, suggesting a more uniform role within the cerebral cortex. In subacute and chronic stroke, the selective GABAA α2 subunit downregulation is likely to influence postlesional plasticity and susceptibility to medication. The absence of changes in the GABAB receptors suggests different regulation than in other pathological conditions, such as epilepsy, schizophrenia or bipolar disorder, in which a downregulation has been reported. Résumé : GABA, le principal neurotransmetteur inhibiteur, et ses récepteurs jouent un rôle important en tant que modulateur de l'activité neuronale dans le système nerveux central et sont impliqués dans de nombreux désordres neurologiques. Dans cette étude, l'expression des sous-unités des récepteur GABAA et GABAB a été visualisée par immunohistochimie dans les aires auditives du cortex humains: le TC (= aire auditif primaire), le TB, et le TA. Les deux hémisphères de neuf sujets considérés normaux du point de vue neurologique et de quatre patients ayant subis un accident cérébro-vasculaire et se trouvant dans la phase subaiguë ou chronique étaient inclues. Dans les cerveaux normaux, les immunohistochimies contre les sous-unités α1, α2, & β2/3 du récepteur GABAA ont marqué le neuropil dans toutes les couches corticales ainsi que les fibres et les neurones de la couche VI dans toutes les aires auditives. Le profile densitométrique montre des différences dans l'expression des sous-unités du récepteur GABAA entre les aires primaires et non-primaires. Contrairement au marquage de neuropil par les sous-unités du recepteur GABAA, 1'immunoréactivité des sous-unités GABAB1 et GABAB2 a été révélée sur les corps cellulaires neuronaux et les dendrites proximaux des neurones pyramidaux et non-pyramidaux dans les couches II-III et est plus dense dans les couches supragranulaires que dans les couches infragranulaires. Aucune différence n'a été observée entre les aires auditives. Dans des cas lésionnels, nous avons observé une diminution de la sous-unité α2 du récepteur GABAA dans les couches granulaires et infragranulaires, alors que le marquage des autres sous-unités du récepteur GABAA et des deux sous-unités de récepteur GABAB reste inchangé. Nos résultats démontrent une présence forte des récepteurs GABAA et GABAB dans le cortex auditif humain, suggérant un rôle crucial du neurotransmetteur GABA dans la formation de la réponse auditive dans les aires auditives primaires et non-primaires. L'expression différentielle des sous-unités de GABAA entre les couches corticales et entre les aires auditives et qui est partiellement différente de celle observée dans d'autres aires corticales préconise une modulation fine de la transmission GABA-ergic en ces différents compartiments. En revanche, l'expression de GABAB a montré des différences laminaires, mais non régionales ; son motif d'expression de base est également très semblable à celui d'autres aires corticales, suggérant un rôle plus uniforme dans le cortex cérébral. Dans les phases subaiguë et chronique des accidents cérébro-vasculaires, la diminution sélective de la sous-unité α2 du recepteur GABAA est susceptible d'influencer la plasticité et la susceptibilité postlésionnelle au médicament. L'absence de changement pour les récepteurs GABAB suggère que le récepteur est régulé différemment après un accident cerebro-vasculaire par rapport à d'autres conditions pathologiques, telles que l'épilepsie, la schizophrénie ou le désordre bipolaire, dans lesquels une diminution de ces sous-unités a été rapportée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sporadic case of multiple endocrine neoplasia type I with coexisting insulinoma and hyperparathyroidism was investigated in vivo and in vitro. The insulinoma was localized by somatostatin receptor scintigraphy and these receptors were functionally active. Octreotide administration decreased the basal insulin and glucagon secretion by 90 and 46%, respectively. Immunocytochemistry of the insulinoma tissue was positive for insulin, chromogranin A and neuropeptide Y. The insulinoma cells were also isolated and cultured in vitro. Incubation experiments revealed that a low glucose concentration (1 mmol/l) was sufficient to increase cytosolic free calcium and to produce a maximal glucose-induced insulin release. Northern blot analysis of RNA obtained from the tumor showed a high abundance of the low Km glucose transporter GLUT1 but no transcript for the high Km glucose transporter GLUT2. The abnormal distribution of glucose transporters probably relates to the abnormal glucose sensing of insulinoma cells, and explains their sustained insulin secretion at low glucose concentrations. Whether these abnormalities share a pathogenetic link with the presence of functionally active somatostatin receptors remains to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoetin-delta (Dynepo Shire Pharmaceuticals, Basing stoke, UK) is a synthetic form of erythropoietin (EPO) whose resemblance with endogenous EPO makes it hard to identify using the classical identification criteria. Urine samples collected from six healthy volunteers treated with epoetin-delta injections and from a control population were immuno-purified and analyzed with the usual IEF method. On the basis of the EPO profiles integration, a linear multivariate model was computed for discriminant analysis. For each sample, a pattern classification algorithm returned a bands distribution and intensity score (bands intensity score) saying how representative this sample is of one of the two classes, positive or negative. Effort profiles were also integrated in the model. The method yielded a good sensitivity versus specificity relation and was used to determine the detection window of the molecule following multiple injections. The bands intensity score, which can be generalized to epoetin-alpha and epoetin-beta, is proposed as an alternative criterion and a supplementary evidence for the identification of EPO abuse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic disorders, such as obesity, diabetes, inflammation, non-alcoholic fatty liver disease and atherosclerosis, are related to alterations in lipid and glucose metabolism, in which peroxisome proliferator-activated receptors (PPAR)α, PPARβ/δ and PPARγ are involved. These receptors form a subgroup of ligand-activated transcription factors that belong to the nuclear hormone receptor family. This review discusses a selection of novel PPAR functions identified during the last few years. The PPARs regulate processes that are essential for the maintenance of pregnancy and embryonic development. Newly found hepatic functions of PPARα are the mediation of female-specific gene repression and the protection of the liver from oestrogen induced toxicity. PPARα also controls lipid catabolism and is the target of hypolipidaemic drugs, whereas PPARγ controls adipocyte differentiation and regulates lipid storage; it is the target for the insulin sensitising thiazolidinediones used to treat type 2 diabetes. Activation of PPARβ/δ increases lipid catabolism in skeletal muscle, the heart and adipose tissue. In addition, PPARβ/δ ligands prevent weight gain and suppress macrophage derived inflammation. In fact, therapeutic benefits of PPAR ligands have been confirmed in inflammatory and autoimmune diseases, such as encephalomyelitis and inflammatory bowel disease. Furthermore, PPARs promote skin wound repair. PPARα favours skin healing during the inflammatory phase that follows injury, whilst PPARβ/δ enhances keratinocyte survival and migration. Due to their collective functions in skin, PPARs represent a major research target for our understanding of many skin diseases. Taken altogether, these functions suggest that PPARs serve as physiological sensors in different stress situations and remain valuable targets for innovative therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three peroxisome proliferator-activated receptors (PPARs) isotypes (PPAR alpha, beta/delta and gamma) belong to the nuclear hormone receptor family. During the last decade, they have been identified as anti-inflammatory transcription factors. Part of this regulation antiinflammatory is mediated through negative interference between PPARs and other nuclear factors such as NFkB, AP-1 and C/EBP, which regulate innate as well as adaptative immunity. In addition, the PPARs control the functions of macrophages, B cells and T cells. In this review, we summarise the pathways through which the PPARs control inflammatory responses. We also discuss the potential utilisation of PPAR specific ligands in the treatment of inflammatory diseases, such as inflammatory bowel diseases, atherosclerosis, Parkinson's and Alzheimer's diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostacyclin and its mimetics are used therapeutically for the treatment of pulmonary hypertension. These drugs act via cell surface prostacyclin receptors (IP receptors); however, some of them can also activate the nuclear receptor peroxisome proliferator-activated receptor beta (PPARbeta). We examined the possibility that PPARbeta is a therapeutic target for the treatment of pulmonary hypertension. Using the newly approved (for pulmonary hypertension) prostacyclin mimetic treprostinil sodium, reporter gene assays for PPARbeta activation and measurement of lung fibroblast proliferation were analyzed. Treprostinil sodium was found to activate PPARbeta in reporter gene assays and to inhibit proliferation of human lung fibroblasts at concentrations consistent with an effect on PPARs but not on IP receptors. The effects of treprostinil sodium on human lung cell proliferation are mimicked by those of the highly selective PPARbeta ligand GW0742. There are no receptor antagonists for PPARbeta or for IP receptors, but by using lung fibroblasts cultured from mice lacking PPARbeta (PPARbeta-/-) or IP (IP-/-), we demonstrate that the antiproliferative effects of treprostinil sodium are mediated by PPARbeta and not IP in lung fibroblasts. These observations suggest that some of the local, longer-term benefits of treprostinil sodium on reducing the remodeling associated with pulmonary hypertension may be mediated by PPARbeta. This study is the first to identify PPARbeta as a potential therapeutic target for the treatment of pulmonary hypertension, which is important because orally active PPARbeta ligands have been developed for the treatment of dyslipidemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idea that a receptor can produce signalling without agonist intervention and that several antagonists can be 'active' in repressing such spontaneous activity is contained in the concept of ligand-induced conformational changes. Yet, this idea was neglected by pharmacologists for many years. In this article, we review the events that brought inverse agonism and constitutive activity to general attention and made this phenomenon a topic of current research. We also suggest a classification of antagonists based on the cooperativity that links their primary site of interaction with other functional domains of the receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional interaction between fibroblast growth factor 23 (FGF-23) and Klotho in the control of vitamin D and phosphate homeostasis is manifested by the largely overlapping phenotypes of Fgf23- and Klotho-deficient mouse models. However, to date, targeted inactivation of FGF receptors (FGFRs) has not provided clear evidence for an analogous function of FGFRs in this process. Here, by means of pharmacologic inhibition of FGFRs, we demonstrate their involvement in renal FGF-23/Klotho signaling and elicit their role in the control of phosphate and vitamin D homeostasis. Specifically, FGFR loss of function counteracts renal FGF-23/Klotho signaling, leading to deregulation of Cyp27b1 and Cyp24a1 and the induction of hypervitaminosis D and hyperphosphatemia. In turn, this initiates a feedback response leading to high serum levels of FGF-23. Further, we show that FGFR inhibition blocks Fgf23 transcription in bone and that this is dominant over vitamin D-induced Fgf23 expression, ultimately impinging on systemic FGF-23 protein levels. Additionally, we identify Fgf23 as a specific target gene of FGF signaling in vitro. Thus, in line with Fgf23- and Klotho-deficient mouse models, our study illustrates the essential function of FGFRs in the regulation of vitamin D and phosphate levels. Further, we reveal FGFR signaling as a novel in vivo control mechanism for Fgf23 expression in bone, suggesting a dual function of FGFRs in the FGF-23/Klotho pathway leading to vitamin D and phosphate homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 microM in single treatment and of 1 microM and 2 microM in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 microM of THC or JWH 015, whereas the expression of TNF-alpha remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromatographic separation of highly polar basic drugs with ideal ionspray mass spectrometry volatile mobile phases is a difficult challenge. A new quantification procedure was developed using hydrophilic interaction chromatography-mass spectrometry with turbo-ionspray ionization in the positive mode. After addition of deuterated internal standards and simple clean-up liquid extraction, the dried extracts were reconstituted in 500 microL pure acetonitrile and 5 microL was directly injected onto a Waters Atlantis HILIC 150- x 2.1-mm, 3-microm column. Chromatographic separations of cocaine, seven metabolites, and anhydroecgonine were obtained by linear gradient-elution with decreasing high concentrations of acetonitrile (80-56% in 18 min). This high proportion of organic solvent makes it easier to be coupled with MS. The eluent was buffered with 2 mM ammonium acetate at pH 4.5. Except for m-hydroxy-benzoylecgonine, the within-day and between-day precisions at 20, 100, and 500 ng/mL were below 7 and 19.1%, respectively. Accuracy was also below +/- 13.5% at all tested concentrations. The limit of quantification was 5 ng/mL (%Diff < 16.1, %RSD < 4.3) and the limit of detection below 0.5 ng/mL. This method was successfully applied to a fatal overdose. In Switzerland, cocaine abuse has dramatically increased in the last few years. A 45-year-old man, a known HIV-positive drug user, was found dead at home. According to relatives, cocaine was self-injected about 10 times during the evening before death. A low amount of cocaine (0.45 mg) was detected in the bloody fluid taken from a syringe discovered near the corpse. Besides injection marks, no significant lesions were detected during the forensic autopsy. Toxicological investigations showed high cocaine concentrations in all body fluids and tissues. The peripheral blood concentrations of cocaine, benzoylecgonine, and methylecgonine were 5.0, 10.4, and 4.1 mg/L, respectively. The brain concentrations of cocaine, benzoylecgonine, and methylecgonine were 21.2, 3.8, and 3.3 mg/kg, respectively. The highest concentrations of norcocaine (about 1 mg/L) were measured in bile and urine. Very high levels of cocaine were determined in hair (160 ng/mg), indicating chronic cocaine use. A low concentration of anhydroecgonine methylester was also found in urine (0.65 mg/L) suggesting recent cocaine inhalation. Therapeutic blood concentrations of fluoxetine (0.15 mg/L) and buprenorphine (0.1 microg/L) were also discovered. A relatively high concentration of Delta(9)-THC was measured both in peripheral blood (8.2 microg/L) and brain cortex (13.5 microg/kg), suggesting that the victim was under the influence of cannabis at the time of death. In addition, fluoxetine might have enhanced the toxic effects of cocaine because of its weak pro-arrhythmogenic properties. Likewise, combination of cannabinoids and cocaine might have increase detrimental cardiovascular effects. Altogether, these results indicate a lethal cocaine overdose with a minor contribution of fluoxetine and cannabinoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) compose a family of three nuclear receptors which act as lipid sensors to modulate gene expression. As such, PPARs are implicated in major metabolic and inflammatory regulations with far-reaching medical consequences, as well as in important processes controlling cellular fate. Throughout this review, we focus on the cellular functions of these receptors. The molecular mechanisms through which PPARs regulate transcription are thoroughly addressed with particular emphasis on the latest results on corepressor and coactivator action. Their implication in cellular metabolism and in the control of the balance between cell proliferation, differentiation and survival is then reviewed. Finally, we discuss how the integration of various intra-cellular signaling pathways allows PPARs to participate to whole-body homeostasis by mediating regulatory crosstalks between organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induces apoptosis and activation of NF-kappaB in cultured cells. In this study, we have demonstrated differential signaling capacities by both receptors using either epitope-tagged soluble TRAIL (sTRAIL) or sTRAIL that was cross-linked with a monoclonal antibody. Interestingly, sTRAIL was sufficient for induction of apoptosis only in cell lines that were killed by agonistic TRAIL-R1- and TRAIL-R2-specific IgG preparations. Moreover, in these cell lines interleukin-6 secretion and NF-kappaB activation were induced by cross-linked or non-cross-linked anti-TRAIL, as well as by both receptor-specific IgGs. However, cross-linking of sTRAIL was required for induction of apoptosis in cell lines that only responded to the agonistic anti-TRAIL-R2-IgG. Interestingly, activation of c-Jun N-terminal kinase (JNK) was only observed in response to either cross-linked sTRAIL or anti-TRAIL-R2-IgG even in cell lines where both receptors were capable of signaling apoptosis and NF-kappaB activation. Taken together, our data suggest that TRAIL-R1 responds to either cross-linked or non-cross-linked sTRAIL which signals NF-kappaB activation and apoptosis, whereas TRAIL-R2 signals NF-kappaB activation, apoptosis, and JNK activation only in response to cross-linked TRAIL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bowel diseases reveal the complex interplay of sensing and signalling pathways in maintaining healthy homeostasis of the intestine. Recent studies of the xenobiotic nuclear receptor, pregnane X receptor and the inflammatory mediator nuclear transcription factor kappaB (NF-kappaB) reveal a functional link between xenobiotic neutralization and inflammation and explain how certain xenobiotics can affect the immune response. Furthermore, another nuclear receptor, peroxisome proliferator-activated receptor gamma (PPAR gamma) has been shown to produce beneficial effects in experimental inflammatory bowel diseases by repression of NF-kappaB thereby reducing inflammation, whilst its close relative PPAR beta/delta appears at a central position in signalling pathways involved in the progression of colon cancer. Recently accumulated knowledge on the action of these nuclear receptors and NF-kappaB in intestinal homeostasis may provide the rationale for the development of innovative treatment strategies with selective receptor modulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphogens of the Wnt protein family are the secreted lipoglycoprotein ligands which initiate several pathways heavily involved in the coordination of various developmental stages of organisms in the majority of animal species. Deregulation of these pathways in the adult leads to formation and sustaining of multiple types of cancer. The latter notion is reinforced by the fact that the very discovery of the first Wnt ligand was due to its role as the causative factor of carcinogenic transformation (Nusse and Varmus, 1982). Nowadays our knowledge on Wnt signaling has "moved with the times" and these pathways were identified to be often crucial for tumor formation, its interactions with the microenvironment, and promotion of the metastases (Huang and Du, 2008; Zerlin et al., 2008; Jessen, 2009). Thus the relevance of the pathway as the target for drug development has further increased in the light of modern paradigms of the complex cancer treatments which target also spreading and growth- promoting factors of tumors by specific and highly efficient substances (Pavet et al., 2010). Presently the field of the Wnt-targeting drug research is almost solely dominated by assays based on transcriptional activation induced by the signaling. This approach resulted in development of a number of promising substances (Lee et al., 2011). Despite its effectiveness, the method nevertheless suffers from several drawbacks. Among the major ones is the fact that this approach is prone to identify compounds targeting rather downstream effectors of the pathway, which are indiscriminately used by all the subtypes of the Wnt signaling. Additionally, proteins which are involved in several signaling cascades and not just the Wnt pathway turn out as targets of the new compounds. These issues increase risks of side effects due to off-target interactions and blockade of the pathway in healthy cells. In the present work we put forward a novel biochemical approach for drug development on the Wnt pathway. It targets Frizzleds (Fzs) - a family of 7-transmbembrane proteins which serve as receptors for Wnt ligands. They offer unique properties for the development of highly specific and effective drugs as they control all branches of the Wnt signaling. Recent advances in the understanding of the roles of heterotrimeric G proteins downstream from Fzs (Katanaev et al., 2005; Liu et al., 2005; Jernigan et al., 2010) suggest application of enzymatic properties of these effectors to monitor the receptor-mediated events. We have applied this knowledge in practice and established a specific and efficient method based on utilization of a novel high-throughput format of the GTP-binding assay to follow the activation of Fzs. This type of assay is a robust and well-established technology for the research and screenings on the GPCRs (Harrison and Traynor, 2003). The conventional method of detection involves the radioactively labeled non-hydrolysable GTP analog [35S]GTPyS. Its application in the large-scale screenings is however problematic which promoted development of the novel non-radioactive GTP analog GTP-Eu. The new molecule employs phenomenon of the time-resolved fluorescence to provide sensitivity comparable to the conventional radioactive substance. Initially GTP-Eu was tested only in one of many possible types of GTP-binding assays (Frang et al., 2003). In the present work we expand these limits by demonstrating the general comparability of the novel label with the radioactive method in various types of assays. We provide a biochemical characterization of GTP-Eu interactions with heterotrimeric and small GTPases and a comparative analysis of the behavior of the new label in the assays involving heterotrimeric G protein effectors. These developments in the GTP-binding assay were then applied to monitor G protein activation by the Fz receptors. The data obtained in mammalian cultured cell lines provides for the first time an unambiguous biochemical proof for direct coupling of Fzs with G proteins. The specificity of this interaction has been confirmed by the experiments with the antagonists of Fz and by the pertussis toxin-mediated deactivation. Additionally we have identified the specificity of Wnt3a towards several members of the Fz family and analyzed the properties of human Fz-1 which was found to be the receptor coupled to the Gi/o family of G proteins. Another process playing significant role in the functioning of every GPCR is endocytosis. This phenomenon can also be employed for drug screenings on GPCRs (Bickle, 2010). In the present work we have demonstrated that Drosophila Fz receptors are involved in an unusual for many GPCRs manifestation of the receptor-mediated internalization. Through combination of biochemical approaches and studies on Drosophila as the model organism we have shown that direct interactions of the Fzs and the α-subunit of the heterotrimeric G protein Go with the small GTPase Rab5 regulate internalization of the receptor in early endosomes. We provide data uncovering the decisive role of this self-promoted endocytosis in formation of a proper signaling output in the canonical as well as planar cell polarity (PCP) pathways regulated by Fz. The results of this work thus establish a platform for the high-throughput screening to identify substances active in the cancer-related Wnt pathways. This methodology has been adjusted and applied to provide the important insights in Fz functioning and will be instrumental for further investigations on the Wnt-mediated pathways.