190 resultados para Copy editing
Resumo:
Alterations of the p53 pathway are among the most frequent aberrations observed in human cancers. We have performed an exhaustive analysis of TP53, p14, p15, and p16 status in a large series of 143 soft tissue sarcomas, rare tumors accounting for around 1% of all adult cancers, with complex genetics. For this purpose, we performed genomic studies, combining sequencing, copy number assessment, and expression analyses. TP53 mutations and deletions are more frequent in leiomyosarcomas than in undifferentiated pleomorphic sarcomas. Moreover, 50% of leiomyosarcomas present TP53 biallelic inactivation, whereas most undifferentiated pleomorphic sarcomas retain one wild-type TP53 allele (87.2%). The spectrum of mutations between these two groups of sarcomas is different, particularly with a higher rate of complex mutations in undifferentiated pleomorphic sarcomas. Most tumors without TP53 alteration exhibit a deletion of p14 and/or lack of mRNA expression, suggesting that p14 loss could be an alternative genotype for direct TP53 inactivation. Nevertheless, the fact that even in tumors altered for TP53, we could not detect p14 protein suggests that other p14 functions, independent of p53, could be implicated in sarcoma oncogenesis. In addition, both p15 and p16 are frequently codeleted or transcriptionally co-inhibited with p14, essentially in tumors with two wild-type TP53 alleles. Conversely, in TP53-altered tumors, p15 and p16 are well expressed, a feature not incompatible with an oncogenic process.
Resumo:
Size and copy number of organelles are influenced by an equilibrium of membrane fusion and fission. We studied this equilibrium on vacuoles-the lysosomes of yeast. Vacuole fusion can readily be reconstituted and quantified in vitro, but it had not been possible to study fission of the organelle in a similar way. Here we present a cell-free system that reconstitutes fragmentation of purified yeast vacuoles (lysosomes) into smaller vesicles. Fragmentation in vitro reproduces physiological aspects. It requires the dynamin-like GTPase Vps1p, V-ATPase pump activity, cytosolic proteins, and ATP and GTP hydrolysis. We used the in vitro system to show that the vacuole-associated TOR complex 1 (TORC1) stimulates vacuole fragmentation but not the opposing reaction of vacuole fusion. Under nutrient restriction, TORC1 is inactivated, and the continuing fusion activity then dominates the fusion/fission equilibrium, decreasing the copy number and increasing the volume of the vacuolar compartment. This result can explain why nutrient restriction not only induces autophagy and a massive buildup of vacuolar/lysosomal hydrolases, but also leads to a concomitant increase in volume of the vacuolar compartment by coalescence of the organelles into a single large compartment.
Resumo:
High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.
Resumo:
Cultural variation in a population is affected by the rate of occurrence of cultural innovations, whether such innovations are preferred or eschewed, how they are transmitted between individuals in the population, and the size of the population. An innovation, such as a modification in an attribute of a handaxe, may be lost or may become a property of all handaxes, which we call "fixation of the innovation." Alternatively, several innovations may attain appreciable frequencies, in which case properties of the frequency distribution-for example, of handaxe measurements-is important. Here we apply the Moran model from the stochastic theory of population genetics to study the evolution of cultural innovations. We obtain the probability that an initially rare innovation becomes fixed, and the expected time this takes. When variation in cultural traits is due to recurrent innovation, copy error, and sampling from generation to generation, we describe properties of this variation, such as the level of heterogeneity expected in the population. For all of these, we determine the effect of the mode of social transmission: conformist, where there is a tendency for each naïve newborn to copy the most popular variant; pro-novelty bias, where the newborn prefers a specific variant if it exists among those it samples; one-to-many transmission, where the variant one individual carries is copied by all newborns while that individual remains alive. We compare our findings with those predicted by prevailing theories for rates of cultural change and the distribution of cultural variation.
Resumo:
Résumé : Un nombre croissant de cas de malaria chez les voyageurs et migrants a été rapporté. Bien que l'analyse microscopique des frottis sanguins reste traditionnellement l'outil diagnostic de référence, sa fiabilité dépend considérablement de l'expertise de l'examinateur, pouvant elle-même faire défaut sous nos latitudes. Une PCR multiplex en temps réel a donc été développée en vue d'une standardisation du diagnostic. Un ensemble d'amorces génériques ciblant une région hautement conservée du gène d'ARN ribosomial 18S du genre Plasmodium a tout d'abord été conçu, dont le polymorphisme du produit d'amplification semblait suffisant pour créer quatre sondes spécifiques à l'espèce P. falciparum, P. malariae, P. vivax et P. ovale. Ces sondes utilisées en PCR en temps réel se sont révélées capables de détecter une seule copie de plasmide de P. falciparum, P. malariae, P. vivax et P. ovale spécifiquement. La même sensibilité a été obtenue avec une sonde de screening pouvant détecter les quatre espèces. Quatre-vingt-dix-sept échantillons de sang ont ensuite été testés, dont on a comparé la microscopie et la PCR en temps réel pour 66 (60 patients) d'entre eux. Ces deux méthodes ont montré une concordance globale de 86% pour la détection de plasmodia. Les résultats discordants ont été réévalués grâce à des données cliniques, une deuxième expertise microscopique et moléculaire (laboratoire de Genève et de l'Institut Suisse Tropical de Bâle), ainsi qu'à l'aide du séquençage. Cette nouvelle analyse s'est prononcé en faveur de la méthode moléculaire pour tous les neuf résultats discordants. Sur les 31 résultats positifs par les deux méthodes, la même réévaluation a pu donner raison 8 fois sur 9 à la PCR en temps réel sur le plan de l'identification de l'espèce plasmodiale. Les 31 autres échantillons ont été analysés pour le suivi de sept patients sous traitement antimalarique. Il a été observé une baisse rapide du nombre de parasites mesurée par la PCR en temps réel chez six des sept patients, baisse correspondant à la parasitémie déterminée microscopiquement. Ceci suggère ainsi le rôle potentiel de la PCR en temps réel dans le suivi thérapeutique des patients traités par antipaludéens. Abstract : There have been reports of increasing numbers of cases of malaria among migrants and travelers. Although microscopic examination of blood smears remains the "gold standard" in diagnosis, this method suffers from insufficient sensitivity and requires considerable expertise. To improve diagnosis, a multiplex real-time PCR was developed. One set of generic primers targeting a highly conserved region of the 18S rRNA gene of the genus Plasmodium was designed; the primer set was polymorphic enough internally to design four species-specific probes for P. falciparum, P. vivax, P. malarie, and P. ovale. Real-time PCR with species-specific probes detected one plasmid copy of P. falciparum, P. vivax, P. malariae, and P. ovale specifically. The same sensitivity was achieved for all species with real-time PCR with the 18S screening probe. Ninety-seven blood samples were investigated. For 66 of them (60 patients), microscopy and real-time PCR results were compared and had a crude agreement of 86% for the detection of plasmodia. Discordant results were reevaluated with clinical, molecular, and sequencing data to resolve them. All nine discordances between 18S screening PCR and microscopy were resolved in favor of the molecular method, as were eight of nine discordances at the species level for the species-specific PCR among the 31 samples positive by both methods. The other 31 blood samples were tested to monitor the antimalaria treatment in seven patients. The number of parasites measured by real-time PCR fell rapidly for six out of seven patients in parallel to parasitemia determined microscopically. This suggests a role of quantitative PCR for the monitoring of patients receiving antimalaria therapy.
Resumo:
The human TPTE (Transmembrane Phosphatase with TEnsin homology) gene family encodes a PTEN-related tyrosine phosphatase with four potential transmembrane domains. Chromosomal mapping revealed multiple copies of the TPTE gene on chromosomes 13, 15, 21, 22 and Y. Human chromosomes 13 and 21 copies encode two functional proteins, TPIP (TPTE and PTEN homologous Inositol lipid Phosphatase) and TPTE, respectively, whereas only one copy of the gene exists in the mouse genome. In the present study, we show that TPTE and TPIP proteins are expressed in secondary spermatocytes and/or prespermatids. In addition, we report the existence of several novel alternatively spliced isoforms of these two proteins with variable number of transmembrane domains. The latter has no influence on the subcellular localization of these different peptides as shown by co-immunofluorescence experiments. Finally, we identify another expressed TPTE copy, mapping to human chromosome 22, whose transcription appears to be under the control of the LTR of human endogenous retrovirus RTVL-H3.
Resumo:
BACKGROUND: APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) has antiretroviral activity associated with the hypermutation of viral DNA through cytosine deamination. APOBEC3G has two cytosine deaminase (CDA) domains; the catalytically inactive amino-terminal domain of APOBEC3G (N-CDA) carries the Vif interaction domain. There is no 3-D structure of APOBEC3G solved by X-ray or nuclear magnetic resonance. METHODOLOGY/PRINCIPAL FINDINGS: We predicted the structure of human APOBEC3G based on the crystal structure of APOBEC2. To assess the model structure, we evaluated 48 mutants of APOBEC3G N-CDA that identify novel variants altering DeltaVif HIV-1 infectivity and packaging of APOBEC3G. Results indicated that the key residue D128 is exposed at the surface of the model, with a negative local electrostatic potential. Mutation D128K changes the sign of that local potential. In addition, two novel functionally relevant residues that result in defective APOBEC3G encapsidation, R122 and W127, cluster at the surface. CONCLUSIONS/SIGNIFICANCE: The structure model identifies a cluster of residues important for packaging of APOBEC3G into virions, and may serve to guide functional analysis of APOBEC3G.
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Resumo:
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
Resumo:
Reliable and long-term expression of transgenes remain significant challenges for gene therapy and biotechnology applications, especially when antibiotic selection procedures are not applicable. In this context, transposons represent attractive gene transfer vectors because of their ability to promote efficient genomic integration in a variety of mammalian cell types. However, expression from genome-integrating vectors may be inhibited by variable gene transcription and/or silencing events. In this study, we assessed whether inclusion of two epigenetic control elements, the human Matrix Attachment Region (MAR) 1-68 and X-29, in a piggyBac transposon vector, may lead to more reliable and efficient expression in CHO cells. We found that addition of the MAR 1-68 at the center of the transposon did not interfere with transposition frequency, and transgene expressing cells could be readily detected from the total cell population without antibiotic selection. Inclusion of the MAR led to higher transgene expression per integrated copy, and reliable expression could be obtained from as few as 2-4 genomic copies of the MAR-containing transposon vector. The MAR X-29-containing transposons was found to mediate elevated expression of therapeutic proteins in polyclonal or monoclonal CHO cell populations using a transposable vector devoid of selection gene. Overall, we conclude that MAR and transposable vectors can be used to improve transgene expression from few genomic transposition events, which may be useful when expression from a low number of integrated transgene copies must be obtained and/or when antibiotic selection cannot be applied.
Resumo:
Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondromatosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is unlinked to EXT1 and EXT2, the genes responsible for autosomal dominant multiple osteochondromas (MO). To identify a gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11 coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11 gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a frequent cause of MC, that lesions in patients with MC appear to arise following a "second hit," that MC may be locus heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome.
Resumo:
We performed whole genome sequencing in 16 unrelated patients with autosomal recessive retinitis pigmentosa (ARRP), a disease characterized by progressive retinal degeneration and caused by mutations in over 50 genes, in search of pathogenic DNA variants. Eight patients were from North America, whereas eight were Japanese, a population for which ARRP seems to have different genetic drivers. Using a specific workflow, we assessed both the coding and noncoding regions of the human genome, including the evaluation of highly polymorphic SNPs, structural and copy number variations, as well as 69 control genomes sequenced by the same procedures. We detected homozygous or compound heterozygous mutations in 7 genes associated with ARRP (USH2A, RDH12, CNGB1, EYS, PDE6B, DFNB31, and CERKL) in eight patients, three Japanese and five Americans. Fourteen of the 16 mutant alleles identified were previously unknown. Among these, there was a 2.3-kb deletion in USH2A and an inverted duplication of ∼446 kb in EYS, which would have likely escaped conventional screening techniques or exome sequencing. Moreover, in another Japanese patient, we identified a homozygous frameshift (p.L206fs), absent in more than 2,500 chromosomes from ethnically matched controls, in the ciliary gene NEK2, encoding a serine/threonine-protein kinase. Inactivation of this gene in zebrafish induced retinal photoreceptor defects that were rescued by human NEK2 mRNA. In addition to identifying a previously undescribed ARRP gene, our study highlights the importance of rare structural DNA variations in Mendelian diseases and advocates the need for screening approaches that transcend the analysis of the coding sequences of the human genome.
Resumo:
We performed association studies with 5,151 SNPs that were judged as likely candidate genetic variations conferring susceptibility to anorexia nervosa (AN) based on location under reported linkage peaks, previous results in the literature (182 candidate genes), brain expression, biological plausibility, and estrogen responsivity. We employed a case-control design that tested each SNP individually as well as haplotypes derived from these SNPs in 1,085 case individuals with AN diagnoses and 677 control individuals. We also performed separate association analyses using three increasingly restrictive case definitions for AN: all individuals with any subtype of AN (All AN: n = 1,085); individuals with AN with no binge eating behavior (AN with No Binge Eating: n = 687); and individuals with the restricting subtype of AN (Restricting AN: n = 421). After accounting for multiple comparisons, there were no statistically significant associations for any individual SNP or haplotype block with any definition of illness. These results underscore the importance of large samples to yield appropriate power to detect genotypic differences in individuals with AN and also motivate complementary approaches involving Genome-Wide Association (GWA) studies, Copy Number Variation (CNV) analyses, sequencing-based rare variant discovery assays, and pathway-based analysis in order to make up for deficiencies in traditional candidate gene approaches to AN.
Resumo:
The gene encoding type I signal peptidase (Lmjsp) has been cloned from Leishmania major. Lmjsp encodes a protein of 180 amino residues with a predicted molecular mass of 20.5 kDa. Comparison of the protein sequence with those of known type I signal peptidases indicates homology in five conserved domains A-E which are known to be important, or essential, for catalytic activity. Southern blot hybridisation analysis indicates that there is a single copy of the Lmjsp gene. A recombinant SPase protein and a synthetic peptide of the L. major signal peptidase were used to examine the presence of specific antibodies in sera from either recovered or active individuals of both cutaneous and visceral leishmaniasis. This evaluation demonstrated that sera from cutaneous and visceral forms of leishmaniasis are highly reactive to both the recombinant and synthetic signal peptidase antigens. Therefore, the Leishmania signal peptidase, albeit localised intracellularly, is a significant target of the Leishmania specific immune response and highlights its potential use for serodiagnosis of cutaneous and visceral leishmaniasis.
Resumo:
Abstract en FrançaisCTCFL a d'abord été identifié comme un paralogue de la protéine ubiquitaire CTCF en raison de sa forte homologie entre leurs onze « zinc fingers », un domaine de liaison à l'ADN. Parmi ses nombreux rôles, la liaison des zinc fingers de CTCF à la région de contrôle de l'empreinte (ICR) maternelle non-méthylée Igf2/H19, contrôle l'expression empreinte (monoallélique) de H19 et IGF2 dans les cellules somatiques. La méthylation de l'ICR Igf2/H19 paternelle est nécessaire à l'expression empreinte de ces deux gènes. Bien que le mécanisme par lequel l'ICR est méthylé soit mal compris, il est connu que l'établissement de la méthylation se produit pendant le développement des cellules germinales mâles et que les ADN méthyltransférases de novo DNMT3A et DNMT3L sont essentiels. Par conséquent, CTCFL fournit un bon candidat pour un rôle dans la méthylation de l'ICR paternelle Igf2/H19 en raison de son expression restreinte à certains types de cellules où la méthylation de l'ICR a lieu (spermatogonies et spermatocytes) ainsi qu'en raison sa capacité à lier les ICR lgf2/HÎ9 dans ces cellules. Les premiers travaux expérimentaux de cette thèse portent sur le rôle possible des mutations de CTCFL chez les patients atteints du syndrome de Silver-Russell (SRS), où une diminution de la méthylation de l'ICR IGF2/H19 a été observée chez 60% d'entre eux. Admettant que CTCFL pourrait être muté chez ces patients, j'ai examiné les mutations possibles de CTCFL chez 35 d'entre eux par séquençage de l'ADN et analyse du nombre de copies d'exons. N'ayant trouvé aucune mutation chez ces patients, cela suggère que les mutations de CTCFL ne sont pas associées au SRS. Les travaux expérimentaux suivants ont porté sur les modifications post-traductionnelles de CTCFL par la protéine SU MO « small ubiquitin-like modifier » (SUMO). La modification de protéines par SU MO change les interactions avec d'autres molécules (ADN ou protéines). Comme CTCFL régule sans doute l'expression d'un certain nombre de gènes dans le cancer et que plusieurs facteurs de transcription sont régulés par SUMO, j'ai mené des expériences pour déterminer si CTCFL est sumoylé. En effet, j'ai observé que CTCFL est sumoylated in vitro et in vivo et j'ai déterminé les deux résidus d'attachement de SUMO aux lysines 181 et 645. Utilisant les mutants de CTCFL K181R et K645R ne pouvant pas être sumoylated, j'ai évalué les conséquences fonctionnelles de la modification par SUMO. Je n'ai trouvé aucun changement significatif dans la localisation subcellulaire, la demi-vie ou la liaison à l'ADN, mais ai constaté que la sumoylation module à la fois {'activation CTCFL-dépendante et la répression de l'expression génique. Il s'agit de la première modification post-traductionnelle décrite pour CTCFL et les conséquences possibles de cette modification sont discutées pour le cancer et les testicules normaux. Avec cette thèse, j'espère avoir ajouté des résultats importants à l'étude de CTCFL et donné quelques idées pour de futures recherches.AbstractJeremiah Bernier-Latmani, Institute of Pathology, University of Lausanne, CHUVCTCFL was first identified as a paralog of the ubiquitous protein CTCF because of high homology between their respective eleven zinc fingers, a DNA binding domain. Among its many roles, CTCF zinc finger-mediated binding to the unmethylated maternal Igf2/H19 imprinting control region (ICR), controls the imprinted (monoallelic) expression of Igf2 and H19 in somatic cells. Methylation of the paternal Igf2/H19 ICR is necessary for the imprinted expression of the two genes. Although the mechanism by which the ICR is methylated is incompletely understood, it is known that establishment of methylation occurs during male germ cell development and the de novo DNA methyltransferases DNMT3A and DNMT3L are essential. Therefore, CTCFL provided a good candidate to play a role in methylation of the paternal Igf2/H19 ICR because of its restricted expression to cell types where ICR methylation takes place (spermatogonia and spermatocytes) and its ability to bind the Igf2/H19 ICR in these cells. The first experimental work of this thesis investigated the possible role of CTCFL mutations in Silver-Russell syndrome (SRS) patients, where it has been observed that 60% of the patients have reduced methylation of the IGF2/HÎ9 ICR. Reasoning that CTCFL could be mutated in these patients, I screened 35 patients for mutations in CTCFL by DNA sequencing and exon copy number analysis, I did not find any mutations in these patients suggesting that mutations of CTCFL are not associated with SRS. The next experimental work of my thesis focused on posttranslational modification of CTCFL by small ubiquitin-like modifier (SUMO) protein. SUMO modification of proteins changes the interactions with other molecules (DNA or protein). As CTCFL arguably regulates the expression of a number of genes in cancer and many transcription factors are regulated by SUMO, I conducted experiments to assess whether CTCFL is sumoylated. I found that CTCFL is sumoylated in vitro and in vivo and determined the two residues of SUMO attachment to be lysines 181 and 645. Using K181R, K645R mutated CTCFL- which cannot be detected to be sumoylated-1 assessed the functional consequences of SUMO modification. I found no significant changes in subcellular localization, half-life or DNA binding, but found that sumoylation modulates both CTCFL-dependent activation and repression of gene expression. This is the first posttranslational modification described for CTCFL and possible consequences of this modification are discussed in both cancer and normal testis. With this thesis, I hope I have added important findings to the study of CTCFL and provide some ideas for future research.
Resumo:
Copy number variants (CNVs) influence the expression of genes that map not only within the rearrangement, but also to its flanks. To assess the possible mechanism(s) underlying this "neighboring effect", we compared intrachromosomal interactions and histone modifications in cell lines of patients affected by genomic disorders and control individuals. Using chromosome conformation capture (4C-seq), we observed that a set of genes flanking the Williams-Beuren Syndrome critical region (WBSCR) were often looping together. The newly identified interacting genes include AUTS2, mutations of which are associated with autism and intellectual disabilities. Deletion of the WBSCR disrupts the expression of this group of flanking genes, as well as long-range interactions between them and the rearranged interval. We also pinpointed concomitant changes in histone modifications between samples. We conclude that large genomic rearrangements can lead to chromatin conformation changes that extend far away from the structural variant, thereby possibly modulating expression globally and modifying the phenotype. GEO SERIES ACCESSION NUMBER: GSE33784, GSE33867.