222 resultados para Contrast media


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) and monocyte chemoattractant protein-1 (MCP-1) exert partly opposing effects in vascular biology. NO plays pleiotropic vasoprotective roles including vasodilation and inhibition of platelet aggregation, smooth muscle cell proliferation, and endothelial monocyte adhesion, the last effect being mediated by MCP-1 downregulation. Early stages of arteriosclerosis are associated with reduced NO bioactivity and enhanced MCP-1 expression. We have evaluated adenovirus-mediated gene transfer of human endothelial NO synthase (eNOS) and of a N-terminal deletion (8ND) mutant of the MCP-1 gene that acts as a MCP-1 inhibitor in arteriosclerosis-prone, apolipoprotein E-deficient (ApoE(-/-)) mice. Endothelium-dependent relaxations were impaired in carotid arteries instilled with a noncoding adenoviral vector but were restored by eNOS gene transfer (p < 0.01). A perivascular collar was placed around the common carotid artery to accelerate lesion formation. eNOS gene transfer reduced lesion surface areas, intima/media ratios, and macrophage contents in the media at 5-week follow-up (p < 0.05). In contrast, 8ND-MCP-1 gene transfer did not prevent lesion formation. In conclusion, eNOS gene transfer restores endothelium-dependent vasodilation and inhibits lesion formation in ApoE(-/-) mouse carotids. Further studies are needed to assess whether vasoprotection is maintained at later disease stages and to evaluate the long-term efficacy of eNOS gene therapy for primary arteriosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To test the efficiency of locally administrated tresperimus in experimental autoimmune uveoretinitis (EAU). METHODS: EAU was induced in Lewis rats by S-antigen (S-Ag) immunization. Three intravitreal injections of tresperimus (prevention or prevention/treatment protocols) were performed at different time points after immunization. The pharmacokinetics of tresperimus was evaluated in the ocular tissues and plasma. The in vitro effect of tresperimus was evaluated on macrophages. EAU was graded clinically and histologically. Blood ocular barrier permeability was evaluated by protein concentration in ocular fluids. Immune response to S-Ag was examined by delayed type hypersensitivity, the expression of inflammatory cytokines in lymph nodes, ocular fluids and serum by multiplex ELISA, and in ocular cells by RT-PCR. RESULTS: In vitro, tresperimus significantly reduced the production of inflammatory cytokines by lipopolysaccharide-stimulated macrophages. In vivo, in the treatment protocol, efficient tresperimus levels were measured in the eye but not in the plasma up to 8 days after the last injection. Tresperimus efficiently reduced inflammation, retinal damage, and blood ocular barrier permeability breakdown. It inhibited nitric oxide synthase-2 and nuclear factor κBp65 expression in ocular macrophages. IL-2 and IL-17 were decreased in ocular media, while IL-18 was increased. By contrast, IL-2 and IL-17 levels were not modified in inguinal lymph nodes draining the immunization site. Moreover, cytokine levels in serum and delayed type hypersensitivity to S-Ag were not different in control and treated rats. In the prevention/treatment protocol, ocular immunosuppressive effects were also observed. CONCLUSIONS: Locally administered tresperimus appears to be a potential immunosuppressive agent in the management of intraocular inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Résumé de l'ouvrage) Originale, insolite, renaissante, l'action religieuse émergente bouscule les habitudes, ébranle les certitudes, construit ici, maintenant, l'autre monde. Peut-on courir le risque? Voilà que la question se pose et se résout en rumeurs publiques, poursuites judiciaires et tensions scolaires, lesquelles mettent à nu des mécanismes inédits d'institutionnalisation de l'expérience religieuse en modernité. As new religious movements seek to carve out their own niche in society, public controversy and opposing beliefs can spark bitter debates, and can even lead to calls for state intervention. How then do new or borderline religious groups negotiate or mediate the building of public space?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONCLUSIONS: The clinical presentation of otogenic dural sinus thrombosis (DST) as a complication of acute otitis media (AOM) can be masked by antibiotic treatment. Morning episodes of vomiting and/or headache, visual impairment and a history of AOM seem to be indicative of otogenic hydrocephalus. We therefore advocate that the MRI scans of patients with similar symptoms should be carefully studied to facilitate the early diagnosis of a potentially life-threatening complication. OBJECTIVE: To describe the frequency, pathognomonic signs, clinical course and outcome of otogenic hydrocephalus and DST as complications of AOM in pediatric patients. MATERIAL AND METHODS: We undertook a retrospective chart review of all pediatric patients (age 1-14 years) treated for otitis media and its complications at an academic medical center between 1999 and 2003. The main outcome measures were otologic and ophthalmologic findings and CT and MRI scans at the beginning of treatment and 3 months later. RESULTS: We report on five cases with otogenic DST following AOM. All but one of them presented initially with diplopia caused by otogenic hydrocephalus. In four cases the otologic complaints had already disappeared by the time of MRI confirmation of the diagnosis. Only one child was referred with severe otologic symptoms. Management included systemic antibiotics, short-term heparin anticoagulation and surgical decompression. In our cases, even after intensive i.v. antibiotic treatment, only surgery led to a significant improvement in the clinical condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel hybrid (or multiphysics) algorithm, which couples pore-scale and Darcy descriptions of two-phase flow in porous media. The flow at the pore-scale is described by the Navier?Stokes equations, and the Volume of Fluid (VOF) method is used to model the evolution of the fluid?fluid interface. An extension of the Multiscale Finite Volume (MsFV) method is employed to construct the Darcy-scale problem. First, a set of local interpolators for pressure and velocity is constructed by solving the Navier?Stokes equations; then, a coarse mass-conservation problem is constructed by averaging the pore-scale velocity over the cells of a coarse grid, which act as control volumes; finally, a conservative pore-scale velocity field is reconstructed and used to advect the fluid?fluid interface. The method relies on the localization assumptions used to compute the interpolators (which are quite straightforward extensions of the standard MsFV) and on the postulate that the coarse-scale fluxes are proportional to the coarse-pressure differences. By numerical simulations of two-phase problems, we demonstrate that these assumptions provide hybrid solutions that are in good agreement with reference pore-scale solutions and are able to model the transition from stable to unstable flow regimes. Our hybrid method can naturally take advantage of several adaptive strategies and allows considering pore-scale fluxes only in some regions, while Darcy fluxes are used in the rest of the domain. Moreover, since the method relies on the assumption that the relationship between coarse-scale fluxes and pressure differences is local, it can be used as a numerical tool to investigate the limits of validity of Darcy's law and to understand the link between pore-scale quantities and their corresponding Darcy-scale variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n this paper the iterative MSFV method is extended to include the sequential implicit simulation of time dependent problems involving the solution of a system of pressure-saturation equations. To control numerical errors in simulation results, an error estimate, based on the residual of the MSFV approximate pressure field, is introduced. In the initial time steps in simulation iterations are employed until a specified accuracy in pressure is achieved. This initial solution is then used to improve the localization assumption at later time steps. Additional iterations in pressure solution are employed only when the pressure residual becomes larger than a specified threshold value. Efficiency of the strategy and the error control criteria are numerically investigated. This paper also shows that it is possible to derive an a-priori estimate and control based on the allowed pressure-equation residual to guarantee the desired accuracy in saturation calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: Dose reduction may compromise patients because of a decrease of image quality. Therefore, the amount of dose savings in new dose-reduction techniques needs to be thoroughly assessed. To avoid repeated studies in one patient, chest computed tomography (CT) scans with different dose levels were performed in corpses comparing model-based iterative reconstruction (MBIR) as a tool to enhance image quality with current standard full-dose imaging. MATERIALS AND METHODS: Twenty-five human cadavers were scanned (CT HD750) after contrast medium injection at different, decreasing dose levels D0-D5 and respectively reconstructed with MBIR. The data at full-dose level, D0, have been additionally reconstructed with standard adaptive statistical iterative reconstruction (ASIR), which represented the full-dose baseline reference (FDBR). Two radiologists independently compared image quality (IQ) in 3-mm multiplanar reformations for soft-tissue evaluation of D0-D5 to FDBR (-2, diagnostically inferior; -1, inferior; 0, equal; +1, superior; and +2, diagnostically superior). For statistical analysis, the intraclass correlation coefficient (ICC) and the Wilcoxon test were used. RESULTS: Mean CT dose index values (mGy) were as follows: D0/FDBR = 10.1 ± 1.7, D1 = 6.2 ± 2.8, D2 = 5.7 ± 2.7, D3 = 3.5 ± 1.9, D4 = 1.8 ± 1.0, and D5 = 0.9 ± 0.5. Mean IQ ratings were as follows: D0 = +1.8 ± 0.2, D1 = +1.5 ± 0.3, D2 = +1.1 ± 0.3, D3 = +0.7 ± 0.5, D4 = +0.1 ± 0.5, and D5 = -1.2 ± 0.5. All values demonstrated a significant difference to baseline (P < .05), except mean IQ for D4 (P = .61). ICC was 0.91. CONCLUSIONS: Compared to ASIR, MBIR allowed for a significant dose reduction of 82% without impairment of IQ. This resulted in a calculated mean effective dose below 1 mSv.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomographic imaging being used at the tomographic microscopy and coherent radiology experiments (TOMCAT) beamline of the SLS is discussed and illustrated. Differential phase contrast (DPC) imaging, using a grating interferometer and a phase-stepping technique, is integrated into the beamline environment at TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. A second phase contrast method is a modified transfer of intensity approach that can yield the 3D distribution of the decrement of the refractive index of a weakly absorbing object from a single tomographic dataset. The two methods are complementary to one another: the DPC method is characterised by a higher sensitivity and by moderate resolution with larger samples; the modified transfer of intensity approach is particularly suited for small specimens when high resolution (around 1 mu m) is required. Both are being applied to investigations in the biological and materials science fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diagnostic yield of prosthetic joint-associated infection is hampered by the phenotypic change of bacteria into a sessile and resistant form, also called biofilm. With sonication, adherent bacteria can be dislodged from the prosthesis. Species identification may be difficult because of their variations in phenotypic appearance and biochemical reaction. We have studied the phenotypic, genotypic, and biochemical properties of Escherichia coli variants isolated from a periprosthetic joint infection. The strains were collected from synovial fluid, periprosthetic tissue, and fluid from the explanted and sonicated prosthesis. Isolates from synovial fluid revealed a normal phenotype, whereas a few variants from periprosthetic tissue and all isolates from sonication fluid showed different morphological features (including small-colony variants). All isolates from sonication fluid were beta-galactosidase negative and nonmotile; most were indole negative. Because of further variations in biochemical properties, species identification was false or not possible in 50% of the isolates included in this study. In contrast to normal phenotypes, variants were resistant to aminoglycosides. Typing of the isolates using pulsed-field gel electrophoresis yielded nonidentical banding patterns, but all strains were assigned to the same clonal origin when compared with 207 unrelated E. coli isolates. The bacteria were repeatedly passaged on culture media and reanalyzed. Thereafter, most variants reverted to normal phenotype and regained their motility and certain biochemical properties. In addition, some variants displayed aminoglycoside susceptibility after reversion. Sonication of an explanted prosthesis allows insight into the lifestyle of bacteria in biofilms. Since sonication fluid also reveals dislodged sessile forms, species identification of such variants may be misleading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantity of interest for high-energy photon beam therapy recommended by most dosimetric protocols is the absorbed dose to water. Thus, ionization chambers are calibrated in absorbed dose to water, which is the same quantity as what is calculated by most treatment planning systems (TPS). However, when measurements are performed in a low-density medium, the presence of the ionization chamber generates a perturbation at the level of the secondary particle range. Therefore, the measured quantity is close to the absorbed dose to a volume of water equivalent to the chamber volume. This quantity is not equivalent to the dose calculated by a TPS, which is the absorbed dose to an infinitesimally small volume of water. This phenomenon can lead to an overestimation of the absorbed dose measured with an ionization chamber of up to 40% in extreme cases. In this paper, we propose a method to calculate correction factors based on the Monte Carlo simulations. These correction factors are obtained by the ratio of the absorbed dose to water in a low-density medium □D(w,Q,V1)(low) averaged over a scoring volume V₁ for a geometry where V₁ is filled with the low-density medium and the absorbed dose to water □D(w,QV2)(low) averaged over a volume V₂ for a geometry where V₂ is filled with water. In the Monte Carlo simulations, □D(w,QV2)(low) is obtained by replacing the volume of the ionization chamber by an equivalent volume of water, according to the definition of the absorbed dose to water. The method is validated in two different configurations which allowed us to study the behavior of this correction factor as a function of depth in phantom, photon beam energy, phantom density and field size.