190 resultados para Brood size manipulation
Resumo:
Objectives The relevance of the SYNTAX score for the particular case of patients with acute ST- segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI) has previously only been studied in the setting of post hoc analysis of large prospective randomized clinical trials. A "real-life" population approach has never been explored before. The aim of this study was to evaluate the impact of the SYNTAX score for the prediction of the myocardial infarction size, estimated by the creatin-kinase (CK) peak value, using the SYNTAX score in patients treated with primary coronary intervention for acute ST-segment elevation myocardial infarction. Methods The primary endpoint of the study was myocardial infarction size as measured by the CK peak value. The SYNTAX score was calculated retrospectively in 253 consecutive patients with acute ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI) in a large tertiary referral center in Switzerland, between January 2009 and June 2010. Linear regression analysis was performed to compare myocardial infarction size with the SYNTAX score. This same endpoint was then stratified according to SYNTAX score tertiles: low <22 (n=178), intermediate [22-32] (n=60), and high >=33 (n=15). Results There were no significant differences in terms of clinical characteristics between the three groups. When stratified according to the SYNTAX score tertiles, average CK peak values of 1985 (low<22), 3336 (intermediate [22-32]) and 3684 (high>=33) were obtained with a p-value <0.0001. Bartlett's test for equal variances between the three groups was 9.999 (p-value <0.0067). A moderate Pearson product-moment correlation coefficient (r=0.4074) with a high statistical significance level (p-value <0.0001) was found. The coefficient of determination (R^2=0.1660) showed that approximately 17% of the variation of CK peak value (myocardial infarction size) could be explained by the SYNTAX score, i.e. by the coronary disease complexity. Conclusion In an all-comers population, the SYNTAX score is an additional tool in predicting myocardial infarction size in patients treated with primary percutaneous coronary intervention (PPCI). The stratification of patients in different risk groups according to SYNTAX enables to identify a high-risk population that may warrant particular patient care.
Resumo:
BACKGROUND: Different studies have shown circadian variation of ischemic burden among patients with ST-Elevation Myocardial Infarction (STEMI), but with controversial results. The aim of this study was to analyze circadian variation of myocardial infarction size and in-hospital mortality in a large multicenter registry. METHODS: This retrospective, registry-based study was based on data from AMIS Plus, a large multicenter Swiss registry of patients who suffered myocardial infarction between 1999 and 2013. Peak creatine kinase (CK) was used as a proxy measure for myocardial infarction size. Associations between peak CK, in-hospital mortality, and the time of day at symptom onset were modelled using polynomial-harmonic regression methods. RESULTS: 6,223 STEMI patients were admitted to 82 acute-care hospitals in Switzerland and treated with primary angioplasty within six hours of symptom onset. Only the 24-hour harmonic was significantly associated with peak CK (p = 0.0001). The maximum average peak CK value (2,315 U/L) was for patients with symptom onset at 23:00, whereas the minimum average (2,017 U/L) was for onset at 11:00. The amplitude of variation was 298 U/L. In addition, no correlation was observed between ischemic time and circadian peak CK variation. Of the 6,223 patients, 223 (3.58%) died during index hospitalization. Remarkably, only the 24-hour harmonic was significantly associated with in-hospital mortality. The risk of death from STEMI was highest for patients with symptom onset at 00:00 and lowest for those with onset at 12:00. DISCUSSION: As a part of this first large study of STEMI patients treated with primary angioplasty in Swiss hospitals, investigations confirmed a circadian pattern to both peak CK and in-hospital mortality which were independent of total ischemic time. Accordingly, this study proposes that symptom onset time be incorporated as a prognosis factor in patients with myocardial infarction.
Resumo:
Social insects use multiple lines of collective defences to combat pathogens. One example of a behav- ioural group defence is the use of antimicrobial plant compounds to disinfect the nest. Indeed, wood ants collect coniferous tree resin, and the presence of resin in their nest protects them against fungal and bacterial pathogens. Many questions remain on the mechanisms of resin use, including which factors elicit resin collection and placement within nests. Here, we investigated whether the presence of brood induces Formica paralugubris workers to collect more resin, and whether the workers preferentially place resin near the brood. We also tested whether the collection and placement of resin depends on the presence of the fungal entomopathogen Beauveria bassiana. Workers brought more resin to their nest when brood was present, and preferentially placed the resin near the brood. In contrast, workers did not increase resin collection in response to exposure to B. bassiana, nor did they place resin closer to contaminated brood or contaminated areas of the nest. This lack of response may be explained by a limited effect of resin against the germination and growth of B. bassiana in vitro. Overall, our main result is that woods ants actively position resin near the brood, which probably confers prophylactic protection against other detrimental microorganisms.
Resumo:
Due to practical difficulties in obtaining direct genetic estimates of effective sizes, conservation biologists have to rely on so-called 'demographic models' which combine life-history and mating-system parameters with F-statistics in order to produce indirect estimates of effective sizes. However, for the same practical reasons that prevent direct genetic estimates, the accuracy of demographic models is difficult to evaluate. Here we use individual-based, genetically explicit computer simulations in order to investigate the accuracy of two such demographic models aimed at investigating the hierarchical structure of populations. We show that, by and large, these models provide good estimates under a wide range of mating systems and dispersal patterns. However, one of the models should be avoided whenever the focal species' breeding system approaches monogamy with no sex bias in dispersal or when a substructure within social groups is suspected because effective sizes may then be strongly overestimated. The timing during the life cycle at which F-statistics are evaluated is also of crucial importance and attention should be paid to it when designing field sampling since different demographic models assume different timings. Our study shows that individual-based, genetically explicit models provide a promising way of evaluating the accuracy of demographic models of effective size and delineate their field of applicability.
Resumo:
Aims: To provide 12-month prevalence and disability burden estimates of a broad range of mental and neurological disorders in the European Union (EU) and to compare these findings to previous estimates. Referring to our previous 2005 review, improved up-to-date data for the enlarged EU on a broader range of disorders than previously covered are needed for basic, clinical and public health research and policy decisions and to inform about the estimated number of persons affected in the EU. Method: Stepwise multi-method approach, consisting of systematic literature reviews, reanalyses of existing data sets, national surveys and expert consultations. Studies and data from all member states of the European Union (EU-27) plus Switzerland, Iceland and Norway were included. Supplementary information about neurological disorders is provided, although methodological constraints prohibited the derivation of overall prevalence estimates for mental and neurological disorders. Disease burden was measured by disability adjusted life years (DALY). Results: Prevalence: It is estimated that each year 38.2% of the EU population suffers from a mental disorder. Adjusted for age and comorbidity, this corresponds to 164.8 million persons affected. Compared to 2005 (27.4%) this higher estimate is entirely due to the inclusion of 14 new disorders also covering childhood/adolescence as well as the elderly. The estimated higher number of persons affected (2011: 165 m vs. 2005: 82 m) is due to coverage of childhood and old age populations, new disorders and of new EU membership states. The most frequent disorders are anxiety disorders (14.0%), insomnia (7.0%), major depression (6.9%), somatoform (6.3%), alcohol and drug dependence (>4%), ADHD (5%) in the young, and dementia (1-30%, depending on age). Except for substance use disorders and mental retardation, there were no substantial cultural or country variations. Although many sources, including national health insurance programs, reveal increases in sick leave, early retirement and treatment rates due to mental disorders, rates in the community have not increased with a few exceptions (i.e. dementia). There were also no consistent indications of improvements with regard to low treatment rates, delayed treatment provision and grossly inadequate treatment. Disability: Disorders of the brain and mental disorders in particular, contribute 26.6% of the total all cause burden, thus a greater proportion as compared to other regions of the world. The rank order of the most disabling diseases differs markedly by gender and age group; overall, the four most disabling single conditions were: depression, dementias, alcohol use disorders and stroke. Conclusion: In every year over a third of the total EU population suffers from mental disorders. The true size of "disorders of the brain" including neurological disorders is even considerably larger. Disorders of the brain are the largest contributor to the all cause morbidity burden as measured by DALY in the EU. No indications for increasing overall rates of mental disorders were found nor of improved care and treatment since 2005; less than one third of all cases receive any treatment, suggesting a considerable level of unmet needs. We conclude that the true size and burden of disorders of the brain in the EU was significantly underestimated in the past.Concerted priority action is needed at all levels, including substantially increased funding for basic, clinical and public health research in order to identify better strategies for improved prevention and treatment for isorders of the brain as the core health challenge of the 21st century. (C) 2011 Published by Elsevier B.V.
Resumo:
Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity.
Resumo:
Miniature diffusion size classifiers (miniDiSC) are novel handheld devices to measure ultrafine particles (UFP). UFP have been linked to the development of cardiovascular and pulmonary diseases; thus, detection and quantification of these particles are important for evaluating their potential health hazards. As part of the UFP exposure assessments of highwaymaintenance workers in western Switzerland, we compared a miniDiSC with a portable condensation particle counter (P-TRAK). In addition, we performed stationary measurements with a miniDiSC and a scanning mobility particle sizer (SMPS) at a site immediately adjacent to a highway. Measurements with miniDiSC and P-TRAK correlated well (correlation of r = 0.84) but average particle numbers of the miniDiSC were 30%âeuro"60% higher. This difference was significantly increased for mean particle diameters below 40 nm. The correlation between theminiDiSC and the SMPSduring stationary measurements was very high (r = 0.98) although particle numbers from the miniDiSC were 30% lower. Differences between the three devices were attributed to the different cutoff diameters for detection. Correction for this size dependent effect led to very similar results across all counters.We did not observe any significant influence of other particle characteristics. Our results suggest that the miniDiSC provides accurate particle number concentrations and geometric mean diameters at traffic-influenced sites, making it a useful tool for personal exposure assessment in such settings.
Resumo:
To date very few studies have addressed the effects of inbreeding in social Hymenoptera, perhaps because the costs of inbreeding are generally considered marginal owing to male haploidy whereby recessive deleterious alleles are strongly exposed to selection in males. Here, we present one of the first studies on the effects of queen and worker homozygosity on colony performance. In a wild population of the ant Formica exsecta, the relative investment of single-queen colonies in sexual production decreased with increased worker homozygosity. This may either stem from increased homozygosity decreasing the likelihood of diploid brood to develop into queens or a lower efficiency of more homozygous workers at feeding larvae and thus a lower proportion of the female brood developing into queens. There was also a significant negative association between colony age and the level of queen but not worker homozygosity. This association may stem from inbreeding affecting queen lifespan and/or their fecundity, and thus colony survival. However, there was no association between queen homozygosity and colony size, suggesting that inbreeding affects colony survival as a result of inbred queens having a shorter lifespan rather than a lower fecundity. Finally, there was no significant association between either worker or queen homozygosity and the probability of successful colony founding, colony size and colony productivity, the three other traits studied. Overall, these results indicate that inbreeding depression may have important effects on colony fitness by affecting both the parental (queen) and offspring (worker)generations cohabiting within an ant colony.
Resumo:
When siblings differ markedly in their need for food, they may benefit from signalling to each other their willingness to contest the next indivisible food item delivered by the parents. This sib-sib communication system, referred to as 'sibling negotiation', may allow them to adjust optimally to investment in begging. Using barn owl (Two alba) broods. I assessed the role of within-brood age hierarchy on sibling negotiation, and in turn on jostling for position where parents predictably deliver food (i.e. nest-box entrance), begging and within-brood food allocation. More specifically, I examined three predictions derived from a game-theoretical model of sibling negotiation where a senior and a junior sibling compete for food resources (Roulin, 2002a, Johnstone and Roulin, 2003): (1) begging effort invested by the senior sibling should be less sensitive to the junior sibling's negotiation than vice versa; (2) the junior should invest less effort in sibling negotiation than its senior sibling but a similar amount of effort in begging; and (3) within-brood food allocation should be directly related to begging but only indirectly to sibling negotiation. Two-chick broods were created and vocalization in the absence (negotiation signals directed to siblings) and presence (begging signals directed to parents) of parents was recorded. In support of the first prediction, juniors begged at a low cadence after their senior sibling negotiated intensely, probably because negotiation reflects prospective investment in begging and hence willingness to compete. In contrast, the begging of senior siblings was not sensitive to their junior sibling's negotiation. In contrast to the second prediction, juniors negotiated and begged more intensely than their senior sibling apparently because they were hungrier rather than younger. In line with the third prediction, juniors monopolized food delivered by their parents when their senior sibling begged at a low level. The begging cadence of both the junior and senior sibling, the junior's negotiation cadence, the difference in age between the two nest-mates and jostling for position were not associated with the likelihood of monopolizing food. In conclusion, sibling negotiation appears to influence begging behaviour, which, in turn, affects within-brood food allocation. Juniors may negotiate to challenge their senior siblings, and thereby determine whether seniors are less hungry before deciding to beg for food. In contrast, seniors may negotiate to deter juniors from begging.
Resumo:
Understanding the factors that drive geographic variation in life history is an important challenge in evolutionary ecology. Here, we analyze what predicts geographic variation in life-history traits of the common lizard, Zootoca vivipara, which has the globally largest distribution range of all terrestrial reptile species. Variation in body size was predicted by differences in the length of activity season, while we found no effects of environmental temperature per se. Females experiencing relatively short activity season mature at a larger size and remain larger on average than females in populations with relatively long activity seasons. Interpopulation variation in fecundity was largely explained by mean body size of females and reproductive mode, with viviparous populations having larger clutch size than oviparous populations. Finally, body size-fecundity relationship differs between viviparous and oviparous populations, with relatively lower reproductive investment for a given body size in oviparous populations. While the phylogenetic signal was weak overall, the patterns of variation showed spatial effects, perhaps reflecting genetic divergence or geographic variation in additional biotic and abiotic factors. Our findings emphasize that time constraints imposed by the environment rather than ambient temperature play a major role in shaping life histories in the common lizard. This might be attributed to the fact that lizards can attain their preferred body temperature via behavioral thermoregulation across different thermal environments. Length of activity season, defining the maximum time available for lizards to maintain optimal performance, is thus the main environmental factor constraining growth rate and annual rates of mortality. Our results suggest that this factor may partly explain variation in the extent to which different taxa follow ecogeographic rules.
Resumo:
Analysis of variance is commonly used in morphometry in order to ascertain differences in parameters between several populations. Failure to detect significant differences between populations (type II error) may be due to suboptimal sampling and lead to erroneous conclusions; the concept of statistical power allows one to avoid such failures by means of an adequate sampling. Several examples are given in the morphometry of the nervous system, showing the use of the power of a hierarchical analysis of variance test for the choice of appropriate sample and subsample sizes. In the first case chosen, neuronal densities in the human visual cortex, we find the number of observations to be of little effect. For dendritic spine densities in the visual cortex of mice and humans, the effect is somewhat larger. A substantial effect is shown in our last example, dendritic segmental lengths in monkey lateral geniculate nucleus. It is in the nature of the hierarchical model that sample size is always more important than subsample size. The relative weight to be attributed to subsample size thus depends on the relative magnitude of the between observations variance compared to the between individuals variance.
Resumo:
In adult mammals, neural progenitors located in the dentate gyrus retain their ability to generate neurons and glia throughout lifetime. In rodents, increased production of new granule neurons is associated with improved memory capacities, while decreased hippocampal neurogenesis results in impaired memory performance in several memory tasks. In mouse models of Alzheimer's disease, neurogenesis is impaired and the granule neurons that are generated fail to integrate existing networks. Thus, enhancing neurogenesis should improve functional plasticity in the hippocampus and restore cognitive deficits in these mice. Here, we performed a screen of transcription factors that could potentially enhance adult hippocampal neurogenesis. We identified Neurod1 as a robust neuronal determinant with the capability to direct hippocampal progenitors towards an exclusive granule neuron fate. Importantly, Neurod1 also accelerated neuronal maturation and functional integration of new neurons during the period of their maturation when they contribute to memory processes. When tested in an APPxPS1 mouse model of Alzheimer's disease, directed expression of Neurod1 in cycling hippocampal progenitors conspicuously reduced dendritic spine density deficits on new hippocampal neurons, to the same level as that observed in healthy age-matched control animals. Remarkably, this population of highly connected new neurons was sufficient to restore spatial memory in these diseased mice. Collectively our findings demonstrate that endogenous neural stem cells of the diseased brain can be manipulated to become new neurons that could allow cognitive improvement.
Resumo:
Summary : Due to anthropogenic impacts and natural fluctuations, fish usually have to cope with constantly changing and often hostile environments. Whereas adult fish have various possibilities to counteract unfavourable environmental conditions, embryos have much fewer options. Besides by their developing immune system, they are protected by the egg envelopes and several immune substances provided by their mothers. In addition to this, they may also adjust their hatching timing in reaction to various risks. However, individuals may vary in their defensive potential. This variation may be either based on their genetics and/or on differential maternal investments and may be dependent on the experienced stress. Nevertheless, in fish, the impact of such parental contributions on embryo and/or juvenile viability is still poorly investigated. The main objective of this thesis was to investigate the importance of paternal (i.e. genetic) and maternal (i.e. genetic + egg investment) contributions to offspring viability under different environmental conditions and at different life stages. In order to investigate this, we used gametes of various salmonids for in vitro fertilisation experiments based on full-factorial breeding designs. The individual studies are summarised in the following chapters: In the first chapter, we tested the effectiveness of the embryonic immune system in Lake whitefish (Coregonus palaea). Namely, we investigated paternal and maternal contributions to the embryos' tolerance to different kinds of pathogen exposure. Additionally, we tested whether an early sub-léthal exposure has a positive or a negative effect on an embryo's susceptibility to later pathogen exposures with the same pathogen. We found that pre-challenged embryos were more susceptible to future challenges. Moreover, pathogen susceptibility was dependent on maternal investments and/or the embryos' own genetics, depending on the challenge level. Chapter 2 summarises a similar study with brown trout (Salmo trutta). In addition to the previously described investigations, we analysed if genetic effects on offspring viability are mediated either by parental MHC genotypes or relatedness based on neutral microsatellite markers, and we tested if males signal their genetic quality either by their body size or their melanin-based skin colouration. We found that embryo survival was lower at higher stress levels and dependent on the embryos' genetics. Addirionally, parents with similar and/or, very common MHC genotypes had higher offspring viabilities. Finally, darker males produced more viable offspring. In the first two chapters we investigated the embryos' defensive potential based on their immune system, i.e. their pathogen tolerance. In chapter 3 we investigate whether hatching timing of Lake whitefìsh (C. palaea) is dependent on parental contributions and/or on pathogen pressure, and whether there are parental-environmental interactions. We found that whitefish embryos hatch earlier under increasing pathogen pressure. Moreover, hatching timing was affected by embryo genetics and/or maternally provided resources, but the magnitude of the effect was dependent on the pathogen. pressure. We also found a significant paternal-environmental interaction, indicating that the hatching efficiency of a certain sib group is dependent on the pathogen environment. Chapter 4 describes an analogous study with brown trout (S. trutta), with similar findings. In the former chapters, we only looked at offspring performance during the embryonic period, and only under semi-natural conditions. In chapter 5 we now test the performance and viability of embryonic and juvenile brown trout (S. trutta) under natural conditions. To measure embryo viability, we put them in brood boxes, buried them in the gravel of a natural river, and analysed survival after several months. To investigate juvenile survival and performance, wé reared embryos under different stress levels in the laboratory and subsequently released the resulting hatchlings in to a closed river section. Juvenile size and survival was then determined one year later. Additionally, we investigated if sires differ in their genetic quality, determined by embryo and juvenile survival as well as juvenile size, and if they signal their quality by either body size or melanin-based body darkness. We found hat juvenile size was dependent on genetic effects and on maternal investment, whereas this was neither the case for embryo nor for juvenile survival. Additionally, we found that offspring of darker males grew larger, and larger juveniles had also an increased survival. Finally, we found acarry-over effect of the early non-lethal challenge: exposing embryos to higher stress levels resulted in smaller juveniles. To evaluate the long-term performance of differently treated groups, mark-recapture studies are inevitable. For this purpose, effective mass-marking techniques are essential. In chapter 6 we tested the suitability of the fluorescent pigment spray marking method for the mass marking of European graylings (Thymallus thymallus), with very promising results. Our in vitro fertilisation studies on whitefish may reveal new insights on potential genetic benefits of mate choice, but the mating system of whitefish under natural conditions is still poorly investigated. In order to study this, we installed underwater cameras at the spawning place of a Coregonus suidteri population, recorded the whole mating period and subsequently analysed the recordings. Confirmations of previous findings as well as exciting new observations are listed and discussed in chapter 7. Dus aux impacts anthropogéniques et aux fluctuations naturelles, les poissons doivent faire face à des environnements en perpétuel changement. Ces changements font que les poissons doivent s'adapter à de nouvelles situations, souvent hostiles pour eux. Les adultes ont différentes possibilités d'échapper à un environnement peu favorable, ce n'est par contre pas le cas des embryons. Les embryons sont protégés d'une part par leur système immunitaire en développement, d'autre part, par la coquille de l'eeuf et différentes substances immunitaires fournies par leur mère. De plus, ils sont capables d'influencer leur propre date d'éclosion en réponse à différents facteurs de stress. Malgré tout, les individus varient dans leur capacité à se défendre. Cette variation peut être basé sur des facteurs génétiques et/ou sur des facteurs maternels, et est dépendante du stress subi. Néanmoins, chez les poissons, l'impact de telles contributions parentales sur la survie d'embryons et/ou juvéniles est peu étudié. L'objectif principal de cette thèse a été d'approfondir les connaissances sur l'importance de la contribution paternelle (c.a.d. génétique) et maternelle (c.a.d. génétique + investissement dans l'oeuf) sur la survie des jeunes dans différentes conditions expérimentales et stades de vie. Pour faire ces analyses, nous avons utilisé des gamètes de divers salmonidés issus de croisements 'full-factorial'. Les différentes expériences sont résumées dans les chapitres suivants: Dans le premier chapitre, nous avons testé l'efficacité du système immunitaire des embryons chez les corégones (Coregonus palea). Plus précisément nous avons étudié la contribution paternelle et maternelle à la tolérance des embryons à différents niveaux de stress pathogène. Nous avons aussi testé, si une première exposition non létale à un pathogène avait un effet positif ou négatif sur la susceptibilité d'un embryon a une deuxième exposition au même pathogène. Nous avons trouvé que des embryons qui avaient été exposés une première fois étaient plus sensibles au pathogène par la suite. Mais aussi que la sensibilité au pathogène était dépendante de l'investissement de la mère et/ou des gènes de l'embryon, dépendamment du niveau de stress. Le deuxième chapitre résume une étude similaire avec des truites (Salmo truffa). Nous avons examiné, si la survie des jeunes variait sous différentes intensités de stress, et si la variance observée était due aux gènes des parents. Nous avons aussi analysé si les effets génétiques sur la survie des juvéniles étaient dus au MHC (Major Histocompatibility Complex) ou au degré de parenté des parents. De plus, nous avons analysé si les mâles signalaient leur qualité génétique par la taille du corps ou par leur coloration noire, due à la mélanine. On a trouvé que la survie des embryons était plus basse quand le niveau de stress était plus haut mais que la variation restait dépendante de la génétique des embryons. De plus, les parents avec des MHC similaires et/ou communs avaient des embryons avec une meilleure survie. Par contre, des parents avec un degré de parenté plus haut produisent des embryons avec une survie plus mauvaise. Finalement nous avons montré que les mâles plus foncés ont des embryons qui survivent mieux, mais que la taille des mâles n'a pas d'influence sur la survie de ces mêmes embryons. Dans les deux premiers chapitres, nous avons étudié le potentiel de défense des embryons basé sur leur système immunitaire, c.a.d. leur tolérance aux pathogènes. Dans le troisième chapitre, nous nous intéressons à la date d'éclosion des corégones (C. palea), pour voir si elle est influencée par les parents ou par la pression des pathogènes, et si il y a une interaction entre ces deux facteurs. Nous avons trouvé que les jeunes naissent plus rapidement lorsque la pression en pathogènes augmente. La date d'éclosion est influencée par la génétique des embryons et/ou l'investissement des parents, mais c'est la magnitude des effets qui est dépendante de la pression du pathogène. Nous avons aussi trouvé une interaction entre l'effet paternel et l'environnement, ce qui indique que la rapidité d'éclosion de certains croisements est dépendante des pathogènes dans l'environnement. Le chapitre 4 décrit une étude analogue avec de truites (S. truffa), avec des résultats sitzimilaires. Dans les précédents chapitres nous nous sommes uniquement concentrés sur les performances des jeunes durant leur stade embryonnaire, et seulement dans des conditions semi naturelles. Dans le chapitre 5 nous testons la performance et la viabilité des embryons et de juvéniles de truites (S. truffa) dans des conditions naturelles. Nous avons trouvé que la taille des juvéniles était dépendante d'effets génétiques et de l'investissement maternel, mais ceci n'était ni les cas pour les survie des embryons et des juvéniles. De plus, nous avons trouvé que les jeunes des mâles plus foncés devenaient plus grands et que les grands ont un meilleur taux de survie. Finalement nous avons trouvé un 'carry-over effect' d'une première exposition non létale à un pathogène: exposer des embryons à des plus hauts niveaux de stress donnait des juvéniles plus petits. Pour évaluer la performance à long terme de groupes traités dé manières différentes, une méthode de marquage-recapture est inévitable. Pour cette raison, des techniques de marquage en masse sont nécessaires. Dans le chapitre 6, nous avons testé l'efficacité de la technique `fluorescent pigment spray marking' pour le marquage en masse de l'Ombre commun (Thymallus thymallus), avec des résultats très prometteurs. Les études de fertilisations in vitro avec les corégones nous donnent une idée du potentiel bénéfice génétique que représente la sélection d'un bon partenaire, même si le système d'accouplement des corégones en milieu naturel reste peu connu. Pour combler cette lacune, nous avons installé des caméras sous-marines autour de la frayère d'une population de corégones (C. suidteri), nous avons enregistré toute la période de reproduction et nous avons analysé les données par la suite. Ainsi, nous avons été capables de confirmer bien des résultats trouvés précédemment, mais aussi de faire de nouvelles observations. Ces résultats sont reportés dans le septième chapitre, où elles sont comparées avec des observations antérieures.