194 resultados para Benign liver tumor
Resumo:
A precise knowledge of arterial, portal, hepatic and biliary anatomical variations is mandatory when a liver surgery is planned. However, only certain variations must be searched when a precise intervention is planned. The main liver resection and biliary interventions will be precised. Related anatomical variations will be precised.
Resumo:
OBJECTIVE: To evaluate morphological and perfusion changes in liver metastases of neuroendocrine tumours by contrast-enhanced ultrasound (CEUS) after transarterial embolisation with bead block (TAE) or trans-arterial chemoembolisation with doxorubicin-eluting beads (DEB-TACE). METHODS: In this retrospective study, seven patients underwent TAE, and ten underwent DEB-TACE using beads of the same size. At 1 day before embolisation, 2 days, 1 month and 3 months after the procedure, a destruction-replenishment study using CEUS was performed with a microbubble-enhancing contrast material on a reference tumour. Relative blood flow (rBF) and relative blood volume (rBV) were obtained from the ratio of values obtained in the tumour and in adjacent liver parenchyma. Morphological parameters such as the tumour's major diameter and the viable tumour's major diameter were also measured. A parameter combining functional and morphological data, the tumour vitality index (TVI), was studied. The Wilcoxon rank-sum test and Fisher's test were used to compare treatment groups. RESULTS: At 3 months rBF, rBV and TVI were significantly lower (P = 0.005, P = 0.04 and P = 0.03) for the group with doxorubicin. No difference in morphological parameters was found throughout the follow-up. CONCLUSIONS: One parameter, TVI, could evaluate the morphological and functional response to treatments.
Resumo:
Despite clinical experience that suggests a high burden of care among relatives of individuals with a primary malignant brain tumor (PMBT), little is known about their actual needs. In this study, the caregivers' personal experiences, quality of life, burden of care, and psychological well-being were examined. Fifty-nine percent did not receive any financial aid for home care, 33% had increased risk for psychosomatic problems, 45% had anxiety, and 33% increased depression levels. The caregiver's quality of life was most strongly affected by the burden of care (p < .001) and the patient's mental state (p < .03). To improve the situation, empathetic professionals and an early implementation of palliative care and social work are required.
Resumo:
In mammals, glycogen synthesis and degradation are dynamic processes regulating blood and cerebral glucose-levels within a well-defined physiological range. Despite the essential role of glycogen in hepatic and cerebral metabolism, its spatiotemporal distribution at the molecular and cellular level is unclear. By correlating electron microscopy and ultra-high resolution ion microprobe (NanoSIMS) imaging of tissue from fasted mice injected with (13)C-labeled glucose, we demonstrate that liver glycogenesis initiates in the hepatocyte perinuclear region before spreading toward the cell membrane. In the mouse brain, we observe that (13)C is inhomogeneously incorporated into astrocytic glycogen at a rate ~25 times slower than in the liver, in agreement with prior bulk studies. This experiment, using temporally resolved, nanometer-scale imaging of glycogen synthesis and degradation, provides greater insight into glucose metabolism in mammalian organs and shows how this technique can be used to explore biochemical pathways in healthy and diseased states. FROM THE CLINICAL EDITOR: By correlating electron microscopy and ultra-high resolution ion microprobe imaging of tissue from fasting mice injected with (13)C-labeled glucose, the authors demonstrate a method to image glycogen metabolism at the nanometer scale.
Resumo:
Despite advances in the diagnosisand treatment of head and neck cancer,survival rates have not improvedover recent years. New therapeuticstrategies, including immunotherapy,are the subject of extensive research.In several types of tumors, the presenceof tumor infiltrating lymphocytes(TILs), notably CD8+ T cellsand dendritic cells, has been correlatedwith improved prognosis. Moreover,some T cells among TILs havebeen shown to kill tumor cells in vitroupon recognition of tumor-associatedantigens. Tumor associated antigensare expressed in a significant proportionof squamous cell carcinoma ofthe head and neck and apparently mayplay a role in the regulation of cancercell growth notably by inhibition ofp53 protein function in some cancers.The MAGE family CT antigens couldtherefore potentially be used as definedtargets for immunotherapy andtheir study bring new insight in tumorgrowth regulation mechanisms. Between1995 - 2005 54 patients weretreated surgically in our institution forsquamous cell carcinoma of the oralcavity. Patient and clinical data wasobtained from patient files and collectedinto a computerized database.For each patient, paraffin embeddedtumor specimens were retrieved andexpression of MAGE CT antigens,p53, NY-OESO-1 were analyzed byimmunohistochemistry. Results werethen correlated with histopathologicalparameter such as tumor depth,front invasion according to Bryne andboth, local control and disease freesurvival. MAGE-A was expressed in52% of patients. NY-ESO-1 and p53expression was found in 7% and 52%cases respectively. A higher tumordepth was significantly correlatedwith expression of MAGE-Aproteins(p = 0.03). No significant correlationcould be made between the expressionof both p53 andNY-OESO-1 andhistopathological parameters. Expressionof tumor-associated antigendid not seem to impact significantlyon patient prognosis. As does thedemonstration of p53 function inhibitionby CT antigens of MAGE family,our results suggest, that tumor associatedantigens may be implicated in tumorprogression mechanisms. Thishypothesis need further investigationto clarify the relationship betweenhost immune response and local tumorbiology.
Resumo:
To compare the impact of meeting specific classification criteria [modified New York (mNY), European Spondyloarthropathy Study Group (ESSG), and Assessment of SpondyloArthritis international Society (ASAS) criteria] on anti-tumor necrosis factor (anti-TNF) drug retention, and to determine predictive factors of better drug survival. All patients fulfilling the ESSG criteria for axial spondyloarthritis (SpA) with available data on the axial ASAS and mNY criteria, and who had received at least one anti-TNF treatment were retrospectively retrieved in a single academic institution in Switzerland. Drug retention was computed using survival analysis (Kaplan-Meier), adjusted for potential confounders. Of the 137 patients classified as having axial SpA using the ESSG criteria, 112 also met the ASAS axial SpA criteria, and 77 fulfilled the mNY criteria. Drug retention rates at 12 and 24 months for the first biologic therapy were not significantly different between the diagnostic groups. Only the small ASAS non-classified axial SpA group (25 patients) showed a nonsignificant trend toward shorter drug survival. Elevated CRP level, but not the presence of bone marrow edema on magnetic resonance imaging (MRI) scans, was associated with significantly better drug retention (OR 7.9, ICR 4-14). In this cohort, anti-TNF drug survival was independent of the classification criteria. Elevated CRP level, but not positive MRI, was associated with better drug retention.
Resumo:
BACKGROUND/AIMS: After treatment with heat-killed Propionibacterium acnes mice show dense hepatic granuloma formation. Such mice develop liver injury in an interleukin (IL)-18-dependent manner after challenge with a sublethal dose LPS. As previously shown, LPS-stimulated Kupffer cells secrete IL-18 depending on caspase-1 and Toll-like receptor (TLR)-4 but independently of its signal adaptor myeloid differentiation factor 88 (MyD88), suggesting importance of another signal adaptor TIR domain-containing adapter inducing IFN-beta (TRIF). Nalp3 inflammasome reportedly controls caspase-1 activation. Here we investigated the roles of MyD88 and TRIF in P. acnes-induced hepatic granuloma formation and LPS-induced caspase-1 activation for IL-18 release. METHODS: Mice were sequentially treated with P. acnes and LPS, and their serum IL-18 levels and liver injuries were determined by ELISA and ALT/AST measurement, respectively. Active caspase-1 in LPS-stimulated Kupffer cells was determined by Western blotting. RESULTS: Macrophage-ablated mice lacked P. acnes-induced hepatic granuloma formation and LPS-induced serum IL-18 elevation and liver injury. Myd88(-/-) Kupffer cells, but not Trif(-/-) cells, exhibited normal caspase-1 activation upon TLR4 engagement in vitro. Myd88(-/-) mice failed to develop hepatic granulomas after P. acnes treatment and liver injury induced by LPS challenge. In contrast, Trif(-/-) mice normally formed the hepatic granulomas, but could not release IL-18 or develop the liver injury. Nalp3(-/-) mice showed the same phenotypes of Trif(-/-) mice. CONCLUSIONS: Propionibacterium acnes treatment MyD88-dependently induced hepatic granuloma formation. Subsequent LPS TRIF-dependently activated caspase-1 via Nalp3 inflammasome and induced IL-18 release, eventually leading to the liver injury.
Resumo:
The mammalian target of rapamycin (mTOR), which exists in two functionally distinct complexes, mTORC1 and mTORC2 plays an important role in tumor growth. Whereas the role of mTORC1 has been well characterized in this process, little is known about the functions of mTORC2 in cancer progression. In this study, we explored the specific role of mTORC2 in colon cancer using a short hairpin RNA expression system to silence the mTORC2-associated protein rictor. We found that downregulation of rictor in HT29 and LS174T colon cancer cells significantly reduced cell proliferation. Knockdown of rictor also resulted in a G1 arrest as observed by cell cycle analysis. We further observed that LS174T cells deficient for rictor failed to form tumors in a nude mice xenograft model. Taken together, these results show that the inhibition of mTORC2 reduces colon cancer cell proliferation in vitro and tumor xenograft formation in vivo. They also suggest that specifically targeting mTORC2 may provide a novel treatment strategy for colorectal cancer.
Resumo:
HYPOTHESIS: Liver transplantation results in hepatic denervation. This may produce alterations of liver energy and substrate metabolism, which may contribute to weight gain after liver transplantation. DESIGN: Prospective clinical study. SETTING: Liver transplantation clinics in a university hospital. PATIENTS: Seven nondiabetic patients with cirrhosis were recruited while on a waiting list for liver transplantation. Seven healthy subjects were recruited as controls. INTERVENTION: Orthotopic liver transplantation. MAIN OUTCOME MEASURES: Evaluation of energy and substrate metabolism after ingestion of a glucose load with indirect calorimetry was performed before, 2 to 6 weeks after, and 5 to 19 months after transplantation. Whole-body glucose oxidation and storage and glucose-induced thermogenesis were calculated. RESULTS: Patients with cirrhosis had modestly elevated resting energy expenditure and normal glucose-induced thermogenesis and postprandial glucose oxidation and storage. These measures remained unchanged after liver transplantation despite a significant increase in postprandial glycemia. Patients, however, gained an average of 3 kg of body weight after 5 to 19 months compared with their weight before transplantation. CONCLUSION: Liver denervation secondary to transplantation does not lead to alterations of energy metabolism after ingestion of a glucose load.
Resumo:
Purpose: To evaluate the feasibility, determine the optimal b-value, and assess the utility of 3-T diffusion-weighted MR imaging (DWI) of the spine in differentiating benign from pathologic vertebral compression fractures.Methods and Materials: Twenty patients with 38 vertebral compression fractures (24 benign, 14 pathologic) and 20 controls (total: 23 men, 17 women, mean age 56.2years) were included from December 2010 to May 2011 in this IRB-approved prospective study. MR imaging of the spine was performed on a 3-T unit with T1-w, fat-suppressed T2-w, gadolinium-enhanced fat-suppressed T1-w and zoomed-EPI (2D RF excitation pulse combined with reduced field-of-view single-shot echo-planar readout) diffusion-w (b-values: 0, 300, 500 and 700s/mm2) sequences. Two radiologists independently assessed zoomed-EPI image quality in random order using a 4-point scale: 1=excellent to 4=poor. They subsequently measured apparent diffusion coefficients (ADCs) in normal vertebral bodies and compression fractures, in consensus.Results: Lower b-values correlated with better image quality scores, with significant differences between b=300 (mean±SD=2.6±0.8), b=500 (3.0±0.7) and b=700 (3.6±0.6) (all p<0.001). Mean ADCs of normal vertebral bodies (n=162) were 0.23, 0.17 and 0.11×10-3mm2/s with b=300, 500 and 700s/mm2, respectively. In contrast, mean ADCs were 0.89, 0.70 and 0.59×10-3mm2/s for benign vertebral compression fractures and 0.79, 0.66 and 0.51×10-3mm2/s for pathologic fractures with b=300, 500 and 700s/mm2, respectively. No significant difference was found between ADCs of benign and pathologic fractures.Conclusion: 3-T DWI of the spine is feasible and lower b-values (300s/mm2) are recommended. However, our preliminary results show no advantage of DWI in differentiating benign from pathologic vertebral compression fractures.
Resumo:
NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.
Resumo:
Purpose of reviewIn bladder cancer, discrimination between benign and malignant tissue may remain tricky with current endoscopic tools. On the basis of our recent experience with high-magnification cystoscopy, compared with other tools such as optical coherence tomography or confocal laser endomicroscopy, it is suggested here that this discrimination may well be feasible endoscopically. The clinical potential of these systems that are being developed as complementary tools to the current endoscopic equipment is reviewed.Recent findingsAt present, white-light cystoscopy, either assisted by fluorescence cystoscopy or narrow-band imaging, is proposed for the global cystoscopic examination of bladder cancer patients. Both techniques compete to help to reduce the recurrence rate by improving exophytic tumor detection, and the extent of carcinoma in situ and high-grade dysplasia. All of which are important prognosis factors for disease progression. In addition, recent findings on neoangiogenesis that accompanies early stage bladder cancer show that this may also be an important observable switch in bladder cancerogenesis, as it is found very early in tumor development. The high magnification cystoscopy as a complementary tool to fluorescence cystoscopy allows classification of the vessel patterns on fluorescence positive sites, and thus facilitates the discrimination between cancerous and noncancerous lesions. This information may be useful to reduce the false positive rate of fluorescence cystoscopy.SummaryEmerging technologies aiming at a real-time in-situ discrimination between benign and malignant tissue during endoscopic bladder exploration is a promising development for the monitoring of bladder cancer patients.