101 resultados para Bartra, Roger
Resumo:
OBJECTIVE: To assess the prevalence of cardiovascular (CV) risk factors in Seychelles, a middle-income African country, and compare the cost-effectiveness of single-risk-factor management (treating individuals with arterial blood pressure >/= 140/90 mmHg and/or total serum cholesterol >/= 6.2 mmol/l) with that of management based on total CV risk (treating individuals with a total CV risk >/= 10% or >/= 20%).METHODS: CV risk factor prevalence and a CV risk prediction chart for Africa were used to estimate the 10-year risk of suffering a fatal or non-fatal CV event among individuals aged 40-64 years. These figures were used to compare single-risk-factor management with total risk management in terms of the number of people requiring treatment to avert one CV event and the number of events potentially averted over 10 years. Treatment for patients with high total CV risk (>/= 20%) was assumed to consist of a fixed-dose combination of several drugs (polypill). Cost analyses were limited to medication.FINDINGS: A total CV risk of >/= 10% and >/= 20% was found among 10.8% and 5.1% of individuals, respectively. With single-risk-factor management, 60% of adults would need to be treated and 157 cardiovascular events per 100 000 population would be averted per year, as opposed to 5% of adults and 92 events with total CV risk management. Management based on high total CV risk optimizes the balance between the number requiring treatment and the number of CV events averted.CONCLUSION: Total CV risk management is much more cost-effective than single-risk-factor management. These findings are relevant for all countries, but especially for those economically and demographically similar to Seychelles.
Resumo:
The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4(+) and CD8(+) T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8(+) T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8(+) T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8(+) T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.
Resumo:
TLR4 (Toll-like receptor 4) is essential for sensing the endotoxin of Gram-negative bacteria. Mutations or deletion of the TLR4 gene in humans or mice have been associated with altered predisposition to or outcome of Gram-negative sepsis. In the present work, we studied the expression and regulation of the Tlr4 gene of mouse. In vivo, TLR4 levels were higher in macrophages compared with B, T or natural killer cells. High basal TLR4 promoter activity was observed in RAW 264.7, J774 and P388D1 macrophages transfected with a TLR4 promoter reporter vector. Analysis of truncated and mutated promoter constructs identified several positive [two Ets (E twenty-six) and one AP-1 (activator protein-1) sites] and negative (a GATA-like site and an octamer site) regulatory elements within 350 bp upstream of the transcriptional start site. The myeloid and B-cell-specific transcription factor PU.1 bound to the proximal Ets site. In contrast, none among PU.1, Ets-1, Ets-2 and Elk-1, but possibly one member of the ESE (epithelium-specific Ets) subfamily of Ets transcription factors, bound to the distal Ets site, which was indispensable for Tlr4 gene transcription. Endotoxin did not affect macrophage TLR4 promoter activity, but it decreased TLR4 steady-state mRNA levels by increasing the turnover of TLR4 transcripts. TLR4 expression was modestly altered by other pro- and anti-inflammatory stimuli, except for PMA plus ionomycin which strongly increased promoter activity and TLR4 mRNA levels. The mouse and human TLR4 genes were highly conserved. Yet, notable differences exist with respect to the elements implicated in gene regulation, which may account for species differences in terms of tissue expression and modulation by microbial and inflammatory stimuli.
Resumo:
Histone deacetylases (HDACs) control gene expression by deacetylating histones and nonhistone proteins. HDAC inhibitors (HDACi) are powerful anticancer drugs that exert anti-inflammatory and immunomodulatory activities. We recently reported a proof-of-concept study demonstrating that HDACi increase susceptibility to bacterial infections in vivo. Yet, still little is known about the effects of HDACi on antimicrobial innate immune defenses. Here we show that HDACi belonging to different chemical classes inhibit at multiple levels the response of macrophages to bacterial infection. HDACi reduce the phagocytosis and the killing of Escherichia coli and Staphylococcus aureus by macrophages. In line with these findings, HDACi decrease the expression of phagocytic receptors and inhibit bacteria-induced production of reactive oxygen and nitrogen species by macrophages. Consistently, HDACi impair the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and inducible nitric oxide synthase. These data indicate that HDACi have a strong impact on critical antimicrobial defense mechanisms in macrophages.
Resumo:
Over the past decade a series of trials of the EORTC Brain Tumor Group (BTG) has substantially influenced and shaped the standard-of-care of primary brain tumors. All these trials were coupled with biological research that has allowed for better understanding of the biology of these tumors. In glioblastoma, EORTC trial 26981/22981 conducted jointly with the National Cancer Institute of Canada Clinical Trials Group showed superiority of concomitant radiochemotherapy with temozolomide over radiotherapy alone. It also identified the first predictive marker for benefit from alkylating agent chemotherapy in glioblastoma, the methylation of the O6-methyl-guanyl-methly-transferase (MGMT) gene promoter. In another large randomized trial, EORTC 26951, adjuvant chemotherapy in anaplastic oligodendroglial tumors was investigated. Despite an improvement in progression-free survival this did not translate into a survival benefit. The third example of a landmark trial is the EORTC 22845 trial. This trial led by the EORTC Radiation Oncology Group forms the basis for an expectative approach to patients with low-grade glioma, as early radiotherapy indeed prolongs time to tumor progression but with no benefit in overall survival. This trial is the key reference in deciding at what time in their disease adult patients with low-grade glioma should be irradiated. Future initiatives will continue to focus on the conduct of controlled trials, rational academic drug development as well as systematic evaluation of tumor tissue including biomarker development for personalized therapy. Important lessons learned in neurooncology are to dare to ask real questions rather than merely rapidly testing new compounds, and the value of well designed trials, including the presence of controls, central pathology review, strict radiology protocols and biobanking. Structurally, the EORTC BTG has evolved into a multidisciplinary group with strong transatlantic alliances. It has contributed to the maturation of neurooncology within the oncological sciences.
Resumo:
Macrophage migration inhibitory factor (MIF) is a homotrimeric multifunctional proinflammatory cytokine that has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Current therapeutic strategies for targeting MIF focus on developing inhibitors of its tautomerase activity or modulating its biological activities using anti-MIF neutralizing antibodies. Herein we report a new class of isothiocyanate (ITC)-based irreversible inhibitors of MIF. Modification by benzyl isothiocyanate (BITC) and related analogues occurred at the N-terminal catalytic proline residue without any effect on the oligomerization state of MIF. Different alkyl and arylalkyl ITCs modified MIF with nearly the same efficiency as BITC. To elucidate the mechanism of action, we performed detailed biochemical, biophysical, and structural studies to determine the effect of BITC and its analogues on the conformational state, quaternary structure, catalytic activity, receptor binding, and biological activity of MIF. Light scattering, analytical ultracentrifugation, and NMR studies on unmodified and ITC-modified MIF demonstrated that modification of Pro1 alters the tertiary, but not the secondary or quaternary, structure of the trimer without affecting its thermodynamic stability. BITC induced drastic effects on the tertiary structure of MIF, in particular residues that cluster around Pro1 and constitute the tautomerase active site. These changes in tertiary structure and the loss of catalytic activity translated into a reduction in MIF receptor binding activity, MIF-mediated glucocorticoid overriding, and MIF-induced Akt phosphorylation. Together, these findings highlight the role of tertiary structure in modulating the biochemical and biological activities of MIF and present new opportunities for modulating MIF biological activities in vivo.
Resumo:
Inhibitory receptors are involvedin the induction of T cell dysfunctionand exhaustion in chronic viral infectionsand in tumors. In the presentstudy, we analyzed the expressionpattern of 3 different inhibitory receptors(PD-1, Lag-3, 2B4) in a murine Bcell lymphoma model. Furthermore,we functionally characterized CD8+T cells expressing inhibitory receptorsfor cytokine production and proliferation.Expansion and secretion ofpro-inflammatory cytokines of CD8+T cells from lymphoma-bearing E-myc mice were significantly reducedcompared to the healthy controls.Similarly, expansion and effectorfunction of CD8+ TCR transgenic(p14) Tcells specific for the gp-33 antigenof lymphocytic choriomeningitisvirus (LCMV) was reduced inlymphoma-bearing E-myc mice afteractivation with LCMV. The functionalimpairment of CTL in the presenceof lymphoma was reversible aftertransfer to naive C57BL/6 recipients.In vitro co-culture experimentsrevealed that the proliferation ofanti-CD3-activated CD8+ T cellsfrom WT mice was significantly inhibitedby CD19+ lymphoma cellsfrom E-myc mice, whereas no inhibitionwas observed after co-culturewith normal B cells. Supernatants ofin vitro cultured lymphoma B cellsand blood sera from lymphoma-bearingE-myc mice significantly reducedT cell proliferation in vitro, ascompared to supernatants from normalB cells cultures or sera of healthyanimals. These experiments indicatethat the lymphoma B cells inactivateCTL by a soluble factor. Expressionanalysis of different important immunologicalcytokines revealed that themacrophage migration inhibitory factor(MIF) is selectively overexpressedin malignant B cells. This finding wasconfirmed by analyzing MIF proteinin culture supernatants and in celllysates. Therefore, lymphoma B cellsmay reduce T cell function and suppresslymphoma surveillance by secretionof MIF.
Resumo:
Parachlamydia acanthamoebae is a Chlamydia-related organism whose pathogenic role in pneumonia is supported by serological and molecular clinical studies and an experimental mouse model of lung infection. Toll-like receptors (TLRs) play a seminal role in sensing microbial products and initiating innate immune responses. The aim of this study was to investigate the roles of MyD88, TLR2, and TLR4 in the interaction of Parachlamydia with macrophages. Here, we showed that Parachlamydia entered bone-marrow derived macrophages (BMDMs) in a TLR-independent manner but did not multiply intracellularly. Interestingly, compared to live bacteria, heat-inactivated Parachlamydia induced the production of substantial amounts of tumor necrosis factor alpha (TNF), interleukin-6 (IL-6), and IL-12p40 by BMDMs and of TNF and IL-6 by peritoneal macrophages as well as RAW 264.7 and J774 macrophage cell lines. Cytokine production by BMDMs, which was partially inhibited upon trypsin treatment of Parachlamydia, was dependent on MyD88, TLR4, and, to a lesser extent, TLR2. Finally, MyD88(-/-), TLR4(-/-), and TLR2(-/-) mice were as resistant as wild-type mice to lung infection following the intratracheal instillation of Parachlamydia. Thus, in contrast to Chlamydia pneumoniae, Parachlamydia acanthamoebae weakly stimulates macrophages, potentially compensating for its low replication capacity in macrophages by escaping the innate immune surveillance.
Resumo:
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is considered an attractive therapeutic target in multiple inflammatory and autoimmune disorders. In addition to its known biologic activities, MIF can also function as a tautomerase. Several small molecules have been reported to be effective inhibitors of MIF tautomerase activity in vitro. Herein we employed a robust activity-based assay to identify different classes of novel inhibitors of the catalytic and biological activities of MIF. Several novel chemical classes of inhibitors of the catalytic activity of MIF with IC(50) values in the range of 0.2-15.5 microm were identified and validated. The interaction site and mechanism of action of these inhibitors were defined using structure-activity studies and a battery of biochemical and biophysical methods. MIF inhibitors emerging from these studies could be divided into three categories based on their mechanism of action: 1) molecules that covalently modify the catalytic site at the N-terminal proline residue, Pro(1); 2) a novel class of catalytic site inhibitors; and finally 3) molecules that disrupt the trimeric structure of MIF. Importantly, all inhibitors demonstrated total inhibition of MIF-mediated glucocorticoid overriding and AKT phosphorylation, whereas ebselen, a trimer-disrupting inhibitor, additionally acted as a potent hyperagonist in MIF-mediated chemotactic migration. The identification of biologically active compounds with known toxicity, pharmacokinetic properties, and biological activities in vivo should accelerate the development of clinically relevant MIF inhibitors. Furthermore, the diversity of chemical structures and mechanisms of action of our inhibitors makes them ideal mechanistic probes for elucidating the structure-function relationships of MIF and to further determine the role of the oligomerization state and catalytic activity of MIF in regulating the function(s) of MIF in health and disease.
Resumo:
Modified vaccinia virus Ankara (MVA) is an attenuated double-stranded DNA poxvirus currently developed as a vaccine vector against HIV/AIDS. Profiling of the innate immune responses induced by MVA is essential for the design of vaccine vectors and for anticipating potential adverse interactions between naturally acquired and vaccine-induced immune responses. Here we report on innate immune sensing of MVA and cytokine responses in human THP-1 cells, primary human macrophages and mouse bone marrow-derived macrophages (BMDMs). The innate immune responses elicited by MVA in human macrophages were characterized by a robust chemokine production and a fairly weak pro-inflammatory cytokine response. Analyses of the cytokine production profile of macrophages isolated from knockout mice deficient in Toll-like receptors (TLRs) or in the adapter molecules MyD88 and TRIF revealed a critical role for TLR2, TLR6 and MyD88 in the production of IFNbeta-independent chemokines. MVA induced a marked up-regulation of the expression of RIG-I like receptors (RLR) and the IPS-1 adapter (also known as Cardif, MAVS or VISA). Reduced expression of RIG-I, MDA-5 and IPS-1 by shRNAs indicated that sensing of MVA by RLR and production of IFNbeta and IFNbeta-dependent chemokines was controlled by the MDA-5 and IPS-1 pathway in the macrophage. Crosstalk between TLR2-MyD88 and the NALP3 inflammasome was essential for expression and processing of IL-1beta. Transcription of the Il1b gene was markedly impaired in TLR2(-/-) and MyD88(-/-) BMDM, whereas mature and secreted IL-1beta was massively reduced in NALP3(-/-) BMDMs or in human THP-1 macrophages with reduced expression of NALP3, ASC or caspase-1 by shRNAs. Innate immune sensing of MVA and production of chemokines, IFNbeta and IL-1beta by macrophages is mediated by the TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways. Delineation of the host response induced by MVA is critical for improving our understanding of poxvirus antiviral escape mechanisms and for designing new MVA vaccine vectors with improved immunogenicity.