116 resultados para BROOD PARASITISM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investment of resources in immune defences, despite obvious short-term benefits, may be detrimental to long-term maintenance and thus decrease longevity in absence of parasites. In addition, females and males may differ in immune investment and intrinsic longevity because they are subjected to different degrees of sexual competition and extrinsic mortality. In order to test if sex-specific investment in mounting an immune response reduced longevity, we compared the longevity of captive male and female common voles Microtus arvalis regularly challenged with keyhole limpet haemocyanin, an antigen which elicits the production of antibodies, to the longevity of voles injected with the corresponding antigen-free buffer (phosphate-buffered saline). Injections were repeated every 28 days to mimic a chronic infection. The magnitude of immune response did not vary between males and females and did not affect longevity. Overall, females lived longer than males, independently of the immune challenge. Thus, the long-term costs of immunity seem small in voles. The longevity pattern is consistent with the prediction that male-biased predation or parasitism in the wild causes reduced intrinsic lifespan, but this reduction is not mediated by a decrease in male immunity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In social animals, body size can be shaped by multiple factors, such as direct genetic effects, maternal effects, or the social environment. In ants, the body size of queens correlates with the social structure of the colony: colonies headed by a single queen (monogyne) generally produce larger queens that are able to found colonies independently, whereas colonies headed by multiple queens (polygyne) tend to produce smaller queens that stay in their natal colony or disperse with workers. We performed a cross-fostering experiment to investigate the proximate causes of queen size variation in the socially polymorphic ant Formica selysi. As expected if genetic or maternal effects influence queen size, eggs originating from monogyne colonies developed into larger queens than eggs collected from polygyne colonies, be they raised by monogyne or polygyne workers. In contrast, eggs sampled in monogyne colonies were smaller than eggs sampled in polygyne colonies. Hence, eggs from monogyne colonies are smaller but develop into larger queens than eggs from polygyne colonies, independently of the social structure of the workers caring for the brood. These results demonstrate that a genetic polymorphism or maternal effect transmitted to the eggs influences queen size, which probably affects the social structure of new colonies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cuscuta spp. are holoparasitic plants that can simultaneously parasitise several host plants. It has been suggested that Cuscuta has evolved a foraging strategy based on a positive relationship between preuptake investment and subsequent reward on different host species. Here we establish reliable parasite size measures and show that parasitism on individuals of different host species alters the biomass of C. campestris but that within host species size and age also contributes to the heterogeneous resource landscape. We then performed two additional experiments to test whether C. campestris achieves greater resource acquisition by parasitising two host species rather than one and whether C. campestris forages in communities of hosts offering different rewards (a choice experiment). There was no evidence in either experiment for direct benefits of a mixed host diet. Cuscuta campestris foraged by parasitising the most rewarding hosts the fastest and then investing the most on them. We conclude that our data present strong evidence for foraging in the parasitic plant C. campestris.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The gene Pgm-3 (or a closely linked gene) influences the phenotype and reproductive success of queens in multiple-queen (polygynous) colonies but not single-queen (monogynous) colonies of the Fire Ant Solenopsis invicta. 2. We investigated the mechanisms of differential phenotypic expression of Pgm-3 in these alternate social forms. Mature winged queens with the homozygous genotype Pgm-3(a/a) averaged 26% heavier than queens with the genotypes Pgm-3(a/b) and Pgm 3(b/b) in the polygynous form. Heterozygotes were slightly heavier (2%) than Pgm-3(b/b) queens in this form, demonstrating that the allele Pgm-3(a) is not completely recessive in its effects on weight. 3. There was no significant difference in weight among queens of the three Pgm-3 genotypes in the monogynous form, with the mean weight of monogynous queens slightly greater than that of polygynous Pgm-3(a/a) queens. Differences in weight between queens of the two social forms and among queens of the three genotypes in the polygynous form are not evident at the pupal stage and thus appear to develop during sexual maturation of the adults. This suggests that some component of the social environment of polygynous colonies inhibits weight gains during queen maturation and that Pgm-(3a/a) queens are relatively less sensitive to this factor. 4. To test whether the high cumulative queen pheromone level characteristic of polygynous colonies is the factor responsible for the differential queen maturation, we compared phenotypes of winged queens reared in split colonies in which pheromone levels were manipulated by adjusting queen number. Queens produced in colony fragments made monogynous were heavier than those produced in polygynous fragments, a finding consistent with the hypothesis that pheromone level affects the reproductive development of queens. However, genotype-specific differences in weights of queens were similar between the two treatments, suggesting that pheromone level was not the key factor of the social environment responsible for the gene-environment interaction. 5. To test whether limited food availability to winged queens associated with the high brood/worker ratios in polygynous colonies is the factor responsible for this interaction, similar split-colony experiments were performed. Elevated brood/worker ratios decreased the weight of winged queens but there was no evidence that this treatment intensified differential weight gains among queens with different Pgm-3 genotypes. Manipulation of the amount of food provided to colonies had no effect on queen weight. 6. The combined data indicate that cumulative pheromone level and brood/worker ratio are two of the factors responsible for the differences in reproductive phenotypes between monogynous and polygynous winged queens but that these factors are not directly responsible for inducing the phenotypic effects of Pgm-3 in polygynous colonies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Winter weather has a strong influence on Barn Owl (Tyto alba) breeding biology. Here, we analyzed the impacts of weather conditions on reproductive performance during the breeding season using data collected over 22 years in a Swiss Barn Owl population. Variations in rain and temperature during the breeding season played an important role in within-year variation in Barn Owl reproduction. An increase in rainfall during the period from 4 to 2 weeks preceding egg laying had a positive effect on clutch size. In contrast, fledgling body mass was negatively influenced by rainfall during the 24 h preceding the measurements. Finally, ambient temperature during the rearing period was positively associated with brood size at fledging. In conclusion, weather conditions during the breeding season place constraints on Barn Owl reproduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social organisms are exposed to many pathogens, and have evolved various defence mechanisms to limit the cost of parasitism. Here we report the first evidence that ants use plant compounds as a collective mean of defence against microorganisms. The wood ants Formica paralugubris often incorporate large quantities of solidified conifer resin into their nests. By creating resin-free and resin-rich experimental nests, we demonstrate that this resin inhibits the growth of microorganisms in a context mimicking natural conditions. Such a collective medication probably confers major ecological advantages, and may be an unrecognized yet common feature of large, complex and successful societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parental effort is usually associated with high metabolism that could lead to an increase in the production of reactive oxidative species giving rise to oxidative stress. Since many antioxidants involved in the resistance to oxidative stress can also enhance immune function, an increase in parental effort may diminish the level of antioxidants otherwise involved in parasite resistance. In the present study, we performed brood size manipulation in a population of great tits (Parus major) to create different levels of parental effort. We measured resistance to oxidative stress and used a newly developed quantitative PCR assay to quantify malarial parasitaemia. We found that males with an enlarged brood had significantly higher level of malarial parasites and lower red blood cell resistance to free radicals than males rearing control and reduced broods. Brood size manipulation did not affect female parasitaemia, although females with an enlarged brood had lower red blood cell resistance than females with control and reduced broods. However, for both sexes, there was no relationship between the level of parasitaemia and resistance to oxidative stress, suggesting a twofold cost of reproduction. Our results thus suggest the presence of two proximate and independent mechanisms for the well-documented trade-off between current reproductive effort and parental survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Astract: The aim of this thesis was to investigate how the presence of multiple queens (polygyny) affects social organization in colonies of the ant Formica exsecta. This is important because polygyny results in reduced relatedness among colony members and therefore reflects a potential paradox for altruistic cooperation being explained by inclusive fitness theory. The reason for this is that workers in polygynous colonies rear no longer only their siblings (high inclusive fitness gain) but also more distantly ox even unrelated brood (low or no inclusive fitness gain). All research projects conducted in this thesis are novel and significant contributions to the understanding of the social evolution of insect societies. We used a mixture of experimental and observational methodologies in laboratory and field colonies of F. exsecta to examine four important aspects of social life that are impacted by polygyny. First, we investigated the influence of queen number on colony sex allocation and found that the number of queens present in a colony significantly affects colony sex ratio investment. The data were consistent with the queen-replenishment hypothesis, which is based on the observation that newly mated queens are often recruited back to their parental nest. According to this theory, colonies containing many queens should only produce males due to local resource competition (i.e. related queens compete for common resources), whereas colonies hosting few queens benefit most from producing new queens to ensure colony survival. Second, we examined how reproduction is partitioned among nestmate queens. We detected a novel pattern of reproductive partitioning whereby a high proportion of queens were completely specialized in the production of only a subset of offspring classes produced within a colony, which might translate into great differences in reproductive success between queens. Third, we could demonstrate that F. exsecta workers indiscriminately reared highly related and unrelated brood although such nepotistic behaviour (preferential rearing of relatives) would be predicted by inclusive fitness theory. The absence of nepotism is probably best explained by its negative effects on overall colony efficiency. Finally, we conducted a detailed population genetic analysis, which revealed that the genetic population structure is different for queens and workers. Our data were best explained with queens forming family-based groups (multicolonial population structure), whereas workers from several nests seemed to be grouped into larger unites (unicolonial population structure) with workers moving freely between neighbouring nests. Altogether, the presented work significantly increased our understanding of the complex organization of polygynous social insect colonies and shows how an important life history trait such as queen number affects social organization at various levels. Résumé: Le but de cette thèse était d'étudier comment la présence de plusieurs reines par colonie (polygynie) influence la vie sociale chez la fourmi Formica exsecta. Ce sujet est important parce que la polygynie chez les insectes sociaux présente un passible paradoxe au niveau de la théorie du "fitness inclusive". Ce paradoxe est basé sur le fait que les ouvrières n'élèvent plus uniquement leurs frères et soeurs (gain de "fitness inclusive" maximale), mais également des individus moins ou pas du tout apparentés (gain de "fitness inclusive" réduit ou absent). Tous les projets de recherche présentés au cours de cette thèse apportent une meilleure compréhension et connaissance au niveau de l'organisation des colonies chez les insectes sociaux. Nous avons employé des méthodes d'observation et de laboratoire afin de mettre en évidence des aspects importants de la vie sociale chez les fourmis influencés par la polygynie. Quatre aspects ont été caractérisés : (1) l'influence du nombre de reines sur le sexe ratio produit par la colonie. Nous avons démontré que les colonies contenant beaucoup de reines produisaient rarement des reines tandis que les colonies contenant peu de reines souvent investissaient beaucoup de ressources dans la production des reines. Ces résultats sont en accord avec la "queen-replenishment hypothesis" qui est basé sur l'observation que les nouvelles reines sont recrutées dans la colonie où elles étaient nées. Cette hypothèse postule que la production des reines est défavorable dans les colonies contenant beaucoup de reines, parce que ces reines apparentées, rentrent en compétition pour des ressources communes. Au contraire, la production des reines est favorable dans des colonies contenant peu de reines afin d'assurer la survie de la colonie ; (2) comment les reines dans une colonie répartissent leur reproduction. Nous avons mis en évidence un nouveau pattern de cette répartition où une grande proportion de reines est complètement spécialisée dans la production d'un seul type de couvain ce qui probablement aboutit à des différences significatives entre reines dans le succès reproducteur ; (3) la capacité des ouvrières à discriminer un couvain de soeur d'un couvain non apparenté. Les résultats ont montré que les ouvrières ne font pas de discrimination entre le couvain de soeur et le couvain non apparenté ce qui n'est pas en accord avec la théorie de la "fitness inclusive". Cette absence de discrimination est probablement due à des effets négatifs comme par exemple la diminution de la production du couvain; (4) la structure génétique d'une population de F. exsecta. Nous avons mis en évidence que la structure génétique entre des groupes de reines est significativement différente de la structure génétique entre des groupes d'ouvrières. Les données suggèrent que les reines forment des groupes basés sur une structure familiale tandis que les ouvrières sont groupées dans des unités plus grandes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parasitism is often a source of variation in host's fitness components. Understanding and estimating its relative importance for fitness components of hosts is fundamental from physiological, ecological and evolutionary perspectives. Host-parasite studies have often reported parasite-induced reduction of host fecundity, whereas the effect of parasitism on host survival has been largely neglected. Here, we experimentally investigated the effect of infestation by rat fleas (Nosopsyllus fasciatus) on the life span of wild-derived male common voles (Microtus arvalis) bred in captivity. We found that the mean life span of parasitized voles was reduced by 36% compared to control voles. Parasitized voles had a smaller body size, but a relatively larger heart and spleen than control voles. These results indicate an effect of flea infestation on host life span and our findings strongly suggest that ectoparasites should be taken into account in the studies of host population dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The effect of a haematophageous ectoparasite, the hen flea, on quality an number of offspring was experimentally investigated in the great tit. The experiment consisted of a controlled infestation of a random sample of nests with the parasitic flea and of a regular treatment of control nests with Microwaves in order to eliminate the naturally occurring fleas. 2. To assess the effects of fleas on variables related to offspring number, we considered the number of hatchlings and fledglings, the mortality between hatching and fledging, and the hatching and fledging success. For assessment of offspring quality, we measured body mass, tarsus and wing length, and calculated the nutritional condition of, nestlings as the ratio of body mass to tarsus length. A physiological variable, the haematocrit level, was also measured. 3. Hatching success and hatchling numbers did not differ between the two experimental groups. Offspring mortality between hatching and fledging was significantly higher in the infested broods (xBAR = 0.22 chicks dead per day) than in the parasite-free broods (xBAR = 0.07 dead per day). Fledging success was 83% in the parasite-free broods, but only 53% in the infested ones. The number of fledglings in infested broods (xBAR = 3.7 fledglings +/-2.1 SD) was significantly lower than in the parasite-free (xBAR = 4.9 +/- 1.1 SD) broods. 4. Body mass of chicks in the infested broods was significantly smaller than in the parasite-free broods both 14 days and 17 days after hatching. The chicks in the infested broods reached a significantly smaller tarsus length than the ones in the parasite-free broods. Close to fledging, the nutritional condition of chicks was significantly lower in infested broods. Haematocrit levels were significantly lower in the infested broods. 5. Brood size correlated differently with body mass and condition of chicks in infested and parasite-free nests. In parasite-free broods both body mass and condition of chicks at age 17 days, i.e. close to fledging, were significantly higher in small broods than in large ones. However, in the infested broods chicks were of the same body mass and condition in large as in small broods. Therefore, in parasite-free broods fitness can potentially be gained through offspring quality or number or both, whereas in infested broods it can be gained through offspring quantity only. In other words, a trade-off between quality and number of offspring is feasible only in the absence of the parasitic hen flea. 6. These results emphasize the need to study the effects of ectoparasites on ecological, behavioural and evolutionary traits of their bird hosts. A knowledge of these effects is essential for the understanding of population dynamics, behaviour and life-history traits of the hosts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leishmania spp. are intracellular protozoan parasites that are delivered within the dermis of their vertebrate hosts. Within this peripheral tissue and the draining lymph node, they find and/or rapidly create dynamic microenvironments that determine their ultimate fate, namely their more or less successful expansion, and favour their transmission to another vertebrate host though a blood-feeding vector. Depending on their genetic characteristics as well as the genetic make-up of their hosts, once within the dermis Leishmania spp. very rapidly drive and maintain sustained T cell-dependent immune responses that arbitrate their ultimate fate within their hosts. The analysis of the parasitism exerted by Leishmania major in mice of different genetic backgrounds has allowed us to recognize some of the early and late mechanisms driven by this parasite that lead to either uncontrolled or restricted parasitism. Uncontrolled parasitism by Leishmania major characterizing mice from a few inbred strains (e.g. BALB/c) is associated with the expansion of parasite reactive Th2 CD4 lymphocytes and results from their rapid and sustained activity. In contrast, restricted parasitism characteristic of mice from the majority of inbred strains results from the development of a polarized parasite-specific Th1 CD4 response. This murine model of infection has already been and will continue to be particularly instrumental in dissecting the rules controlling the pathway of differentiation of T cells in vivo. In the long run, the understanding of these rules should contribute to the rational development of novel immunotherapeutic interventions against severe infectious diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect societies are paramount examples of cooperation, yet they also harbor internal conflicts whose resolution depends on the power of the opponents. The male-haploid, female-diploid sex-determining system of ants causes workers to be more related to sisters than to brothers, whereas queens are equally related to daughters and sons. Workers should thus allocate more resources to females than to males, while queens should favor an equal investment in each sex. Female-biased sex allocation and manipulation of the sex ratio during brood development suggest that workers prevail in many ant species. Here, we show that queens of Formica selysi strongly influenced colony sex allocation by biasing the sex ratio of their eggs. Most colonies specialized in the production of a single sex. Queens in female-specialist colonies laid a high proportion of diploid eggs, whereas queens in male-specialist colonies laid almost exclusively haploid eggs, which constrains worker manipulation. However, the change in sex ratio between the egg and pupae stages suggests that workers eliminated some male brood, and the population sex-investment ratio was between the queens' and workers' equilibria. Altogether, these data provide evidence for an ongoing conflict between queens and workers, with a prominent influence of queens as a result of their control of egg sex ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY : The evolution of animal societies, where some individuals forego their own reproductive opportunities to help others to reproduce, poses an evolutionary paradox that can be traced back to Darwin. Altruism may evolve through kin selection when the donor and recipient of altruistic acts are related to each other. In social insects, workers are generally highly related to the brood they rear when colonies are headed by a single queen. Yet some ants have an extraordinary social organization, called unicoloniality, whereby individuals from separate nests mix freely to form large supercolonies, which in some cases extend over hundreds of km. These supercolonies are characterised by a high number of queens (polygyny) and an absence of clear colony boundaries. This type of social organization represents an evolutionary paradox because relatedness between nestmates is effectively zero. In such conditions, kin selection cannot account for the evolution of reproductive altruism. Moreover, unicoloniality is thought to be unstable over time, because workers that can no longer aid close relatives may evolve more selfish strategies. The Argentine ant (Linepithema humile) is a highly invasive species listed among the hundred world's worst invaders by the UICN. Native from South America, L. humile has been accidentally introduced throughout the world. Native populations have been described as noninvasive with a family-based organization. In contrast, within its introduction range, they form unicolonial supercolonies that contain numerous nests without intraspecific aggression. The development of such unicolonial populations has been explained as a direct consequence of the ant's introduction into a new habitat, favouring a transition from family-based to open colonies. To determine if the social structure of the Argentine ant is fundamentally different between the native and the introduced range, we studied genetically and behaviourally native and introduced populations of L. humile over different geographic scales. Our results clearly indicated that there are no fundamental differences in the social organisation of the Argentine ant between the two ranges. Our investigations revealed that, contrary to previous claims, native populations have a unicolonial social organisation very similar to that observed in the introduced range. Consequently, the unicolonial social structure of the Argentine ant does not stem from a shift in social organization associated with introduction into new habitats but evolved in the native range and is likely a stable, evolutionarily ancient adaptation to the local environment. Our study on native populations of L. humile also gave important insight in the comprehension of the evolution of unicoloniality in the Argentine ant. Native supercolonies are relatively small compared to introduced ones and may co-habit in a same population. These supercolonies are genetically highly differentiated leading to a significant relatedness among nestmate workers when the different supercolonies of a population are taken as a reference population. This provides the necessary conditions for loin selection to operate. Furthermore, we examined a native population over time, which revealed a high supercolony extinction rate. If more competitive supercolonies are more likely to survive or replace other supercolonies, a subtle dynamical process between the spread of selfish traits within supercolony and the selective elimination of supercolonies with such traits may allow a stable equilibrium and the persistence of unicoloniality over time. Finally, a worldwide study of the Argentine ant showed that the introduced supercolonies originate from numerous independent introduction events. In conclusion, the success of the Argentine ant does not stem from a shift in social organization associated with its introduction into new habitats, but is most probably explained by the intrinsic characteristics developed in its native range. RESUME : L'altruisme de reproduction où certains individus renoncent à leur propre reproduction pour aider d'autres individus à se reproduire constitue l'un des plus grand paradoxe de l'évolution. En effet, comment expliquer l'évolution de comportements qui tendent à augmenter les chances de survie et le succès reproductif d'autres individus, alors que ces actes diminuent l'aptitude de leurs auteurs ? La théorie de la sélection de parentèle permet de résoudre ce problème. Cette théorie stipule qu'en aidant de proches parents à se reproduire, les individus peuvent promouvoir indirectement la transmission de copies de leurs propres gènes à la génération suivante. Chez les insectes sociaux, l'altruisme des ouvrières s'explique par la théorie de sélection de parentèle lorsque les colonies sont monogynes (constituées d'une seule reine) puisque les ouvrières sont fortement apparentées aux couvains dont elles s'occupent. Par contre, les espèces dites unicoloniales, dont les colonies forment des réseaux de nids appelés supercolonies, représentent toujours un paradoxe pour les théories de l'évolution puisque l'apparentement entre les différents individus d'un nid est nulle. De plus, l'unicolonialité ne devrait pas être stable sur le long terme parce que les ouvrières qui ne s'occupent plus de leur apparentés devraient développer des stratégies plus égoïstes au cours du temps. La fourmi d'Argentine (Linepithema humile) est une espèce invasive ayant un impact considérable sur son environnement. Originaire d'Amérique du Sud, elle a été introduite dans pratiquement toutes les régions du monde dont le climat est de type méditerranéen. Son incroyable succès invasif s'explique par sa structure sociale unicoloniale observée dans chacun des pays où elle a été introduite. Par contre, les rares études effectuées en Argentine ont suggéré que la fourmi d'Argentine n'était pas unicoloniale dans son aire native. L'unicolonialité chez la fourmi d'Argentine était donc considéré comme une conséquence de son introduction dans de nouveaux environnements. Durant cette thèse, nous avons vérifié si la structure sociale de cette espèce différait fondamentalement entre l'aire native et introduite. Pour cela, nous avons étudié, à différentes échelles géographiques, des populations introduites et argentines avec une approche génétique et comportementale. L'ensemble de nos résultats montrent que les différences entre les deux structure sociales ne sont pas aussi importantes que ce que l'on imaginait. Les populations natives sont aussi constituées de réseaux de nids coopérants. La taille de ses supercolonies est toutefois bien moins importante en Argentine et il n'est pas rare de trouver plusieurs supercolonies cohabitantes dans une même population. Nous avons démontré que ces réseaux de nids étaient constitués d'individus qui sont plus apparentés entre eux qu'ils ne le sont avec les individus d'autres supercolonies, ainsi l'unicolonialité dans son aire d'origine ne représente pas un réel paradoxe pour les théories de l'évolution. Finalement nous avons étudié la même population en Argentine à six ans d'intervalle et avons constaté que les supercolonies avaient un taux de survie très faible ce qui pourrait expliquer la stabilité de l'unicolonialité au cours du temps. Si les supercolonies les plus compétitives survivent mieux que les supercolonies dans lesquelles apparaissent des traits égoïstes, on devrait alors observer une dynamique entre l'apparition de traits égoïstes et l'élimination des supercolonies dans lesquelles ces traits égoïstes évolueraient. Finalement, une étude mondiale nous a montré que les supercolonies étaient originaires de nombreux événements d'introductions indépendants. En conclusion, le succès invasif de la fourmi d'Argentine n'est donc pas dû à un changement de comportement associé à son introduction mais est lié aux caractéristiques qu'elle a développées en Argentine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract The maintenance of genetic variation is a long-standing issue because the adaptive value of life-history strategies associated with each genetic variant is usually unknown. However, evidence for the coexistence of alternative evolutionary fixed strategies at the population level remains scarce. Because in the tawny owl (Strix aluco) heritable melanin-based coloration shows different physiological and behavioral norms of reaction, we investigated whether coloration is associated with investment in maintenance and reproduction. Light melanic owls had lower adult survival compared to dark melanic conspecifics, and color variation was related to the trade-off between offspring number and quality. When we experimentally enlarged brood size, light melanic males produced more fledglings but in poorer condition, and they were less often recruited in the local breeding population than those of darker melanic conspecifics. Our results also suggest that dark melanic males allocate a constant effort to raise their brood independently of environmental conditions, whereas lighter melanic males finely adjust reproductive effort in relation to changes in environmental conditions. Color traits can therefore be associated with life-history strategies, and stochastic environmental perturbation can temporarily favor one phenotype over others. The existence of fixed strategies implies that some phenotypes can sometimes display a "maladapted" strategy. Long-term population monitoring is therefore vital for a full understanding of how different genotypes deal with trade-offs.