165 resultados para BEHAVIORAL-PROBLEMS
Resumo:
BACKGROUND: Progress in perinatal medicine has made it possible to increase the survival of very or extremely low birthweight infants. Developmental outcomes of surviving preterm infants have been analysed at the paediatric, neurological, cognitive, and behavioural levels, and a series of perinatal and environmental risk factors have been identified. The threat to the child's survival and invasive medical procedures can be very traumatic for the parents. Few empirical reports have considered post-traumatic stress reactions of the parents as a possible variable affecting a child's outcome. Some studies have described sleeping and eating problems as related to prematurity; these problems are especially critical for the parents. OBJECTIVE: To examine the effects of post-traumatic reactions of the parents on sleeping and eating problems of the children. DESIGN: Fifty families with a premature infant (25-33 gestation weeks) and a control group of 25 families with a full term infant participated in the study. Perinatal risks were evaluated during the hospital stay. Mothers and fathers were interviewed when their children were 18 months old about the child's problems and filled in a perinatal post-traumatic stress disorder questionnaire (PPQ). RESULTS: The severity of the perinatal risks only partly predicts a child's problems. Independently of the perinatal risks, the intensity of the post-traumatic reactions of the parents is an important predictor of these problems. CONCLUSIONS: These findings suggest that the parental response to premature birth mediates the risks of later adverse outcomes. Preventive intervention should be promoted.
Resumo:
Optimal behavior relies on flexible adaptation to environmental requirements, notably based on the detection of errors. The impact of error detection on subsequent behavior typically manifests as a slowing down of RTs following errors. Precisely how errors impact the processing of subsequent stimuli and in turn shape behavior remains unresolved. To address these questions, we used an auditory spatial go/no-go task where continual feedback informed participants of whether they were too slow. We contrasted auditory-evoked potentials to left-lateralized go and right no-go stimuli as a function of performance on the preceding go stimuli, generating a 2 × 2 design with "preceding performance" (fast hit [FH], slow hit [SH]) and stimulus type (go, no-go) as within-subject factors. SH trials yielded SH trials on the following trials more often than did FHs, supporting our assumption that SHs engaged effects similar to errors. Electrophysiologically, auditory-evoked potentials modulated topographically as a function of preceding performance 80-110 msec poststimulus onset and then as a function of stimulus type at 110-140 msec, indicative of changes in the underlying brain networks. Source estimations revealed a stronger activity of prefrontal regions to stimuli after successful than error trials, followed by a stronger response of parietal areas to the no-go than go stimuli. We interpret these results in terms of a shift from a fast automatic to a slow controlled form of inhibitory control induced by the detection of errors, manifesting during low-level integration of task-relevant features of subsequent stimuli, which in turn influences response speed.
Resumo:
(from the journal abstract) Background: Despite the effectiveness of anti-psychotic pharmacotherapy, residual hallucinations and delusions do not completely resolve in some medicated patients. Additional cognitive behavioral therapy (CBT) seems to improve the management of positive symptoms. Despite promising results, the efficacy of CBT is still unclear. The present study addresses this issue taking into account a number of newly published controlled studies. Method: Fourteen studies including 1484 patients, published between 1990 and 2004 were identified and a meta-analysis of their results performed. Results: Compared to other adjunctive measures, CBT showed significant reduction in positive symptoms and there was a higher benefit of CBT for patients suffering an acute psychotic episode versus the chronic condition (effect size of 0.57 vs. 0.27). Discussion: CBT is a promising adjunctive treatment for positive symptoms in schizophrenia spectrum disorders. However, a number of potentially modifying variables have not yet been examined, such as therapeutic alliance and neuropsychological deficits. (PsycINFO Database Record (c) 2005 APA, all rights reserved)
Resumo:
A haplotype is an m-long binary vector. The XOR-genotype of two haplotypes is the m-vector of their coordinate-wise XOR. We study the following problem: Given a set of XOR-genotypes, reconstruct their haplotypes so that the set of resulting haplotypes can be mapped onto a perfect phylogeny (PP) tree. The question is motivated by studying population evolution in human genetics, and is a variant of the perfect phylogeny haplotyping problem that has received intensive attention recently. Unlike the latter problem, in which the input is "full" genotypes, here we assume less informative input, and so may be more economical to obtain experimentally. Building on ideas of Gusfield, we show how to solve the problem in polynomial time, by a reduction to the graph realization problem. The actual haplotypes are not uniquely determined by that tree they map onto, and the tree itself may or may not be unique. We show that tree uniqueness implies uniquely determined haplotypes, up to inherent degrees of freedom, and give a sufficient condition for the uniqueness. To actually determine the haplotypes given the tree, additional information is necessary. We show that two or three full genotypes suffice to reconstruct all the haplotypes, and present a linear algorithm for identifying those genotypes.
Resumo:
OBJECTIVE: With the increased survival of very preterm infants, there is a growing concern for their developmental and socioemotional outcomes. The quality of the early mother-infant relationship has been noted as 1 of the factors that may exacerbate or soften the potentially adverse impact of preterm birth, particularly concerning the infant's later competencies and development. The first purpose of the study was to identify at 6 months of corrected age whether there were specific dyadic mother-infant patterns of interaction in preterm as compared with term mother-infant dyads. The second purpose was to examine the potential impact of these dyadic patterns on the infant's behavioral and developmental outcomes at 18 months of corrected age. METHODS: During a 12-month period (January-December 1998), all preterm infants who were <34 weeks of gestational age and hospitalized at the NICU of the Lausanne University Hospital were considered for inclusion in this longitudinal prospective follow-up study. Control healthy term infants were recruited during the same period from the maternity ward of our hospital. Mother-infant dyads with preterm infants (n = 47) and term infants (n = 25) were assessed at 6 months of corrected age during a mother-infant play interaction and coded according to the Care Index. This instrument evaluates the mother's interactional behavior according to 3 scales (sensitivity, control, and unresponsiveness) and the child's interactional behavior according to 4 scales (cooperation, compliance, difficult, and passivity). At 18 months, behavioral outcomes of the children were assessed on the basis of a semistructured interview of the mother, the Symptom Check List. The Symptom Check List explores 4 groups of behavioral symptoms: sleeping problems, eating problems, psychosomatic symptoms, and behavioral and emotional disorders. At the same age, developmental outcomes were evaluated using the Griffiths Developmental Scales. Five areas were evaluated: locomotor, personal-social, hearing and speech, eye-hand coordination, and performance. RESULTS: Among the possible dyadic patterns of interaction, 2 patterns emerge recurrently in mother-infant preterm dyads: a "cooperative pattern" with a sensitive mother and a cooperative-responsive infant (28%) and a "controlling pattern" with a controlling mother and a compulsive-compliant infant (28%). The remaining 44% form a heterogeneous group that gathers all of the other preterm dyads and is composed of 1 sensitive mother-passive infant; 10 controlling mothers with a cooperative, difficult, or passive infant; and 10 unresponsive mothers with a cooperative, difficult, or passive infant. Among the term control subjects, 68% of the dyads are categorized as cooperative pattern dyads, 12% as controlling pattern dyads, and the 20% remaining as heterogeneous dyads. At 18 months, preterm infants of cooperative pattern dyads have similar outcomes as the term control infants. Preterm infants of controlling pattern dyads have significantly fewer positive outcomes as compared with preterm infants of cooperative pattern dyads, as well as compared with term control infants. They display significantly more behavioral symptoms than term infants, including more eating problems than term infants as well as infants from cooperative preterm dyads. Infants of the controlling preterm dyads do not differ significantly for the total development quotient but have worse personal-social development than term infants and worse hearing-speech development than infants from cooperative preterm dyads. The preterm infants of the heterogeneous group have outcomes that can be considered as intermediate with no significant differences compared with preterm infants from the cooperative pattern or the controlling pattern dyads. CONCLUSION: Among mother-preterm infant dyads, we identified 2 specific patterns of interaction that could play either a protective (cooperative pattern) or a risk-precipitating (controlling pattern) role on developmental and behavioral outcome, independent of perinatal risk factors and of the family's socioeconomic background. The controlling pattern is much more prevalent among preterm than term dyads and is related to a less favorable infant outcome. However, the cooperative pattern still represents almost 30% of the preterm dyads, with infants' outcome comparable to the ones of term infants. These results point out the impact of the quality of mother-infant relationship on the infant's outcome. The most important clinical implication should be to support a healthy parent-infant relationship already in the NICU but also in the first months of the infant's life. Early individualized family-based interventions during neonatal hospitalization and transition to home have been shown to reduce maternal stress and depression and increase maternal self-esteem and to improve positive early parent-preterm infant interactions.
Resumo:
In human, neuronal migration disorders are commonly associated with developmental delay, mental retardation, and epilepsy. We describe here a new mouse mutant that develops a heterotopic cortex (HeCo) lying in the dorsolateral hemispheric region, between the homotopic cortex (HoCo) and subcortical white matter. Cross-breeding demonstrated an autosomal recessive transmission. Birthdating studies and immunochemistry for layer-specific markers revealed that HeCo formation was due to a transit problem in the intermediate zone affecting both radially and tangentially migrating neurons. The scaffold of radial glial fibers, as well as the expression of doublecortin is not altered in the mutant. Neurons within the HeCo are generated at a late embryonic age (E18) and the superficial layers of the HoCo have a correspondingly lower cell density and layer thickness. Parvalbumin immunohistochemistry showed the presence of gamma-aminobutyric acidergic cells in the HeCo and the mutant mice have a lowered threshold for the induction of epileptic seizures. The mutant showed a developmental delay but, in contrast, memory function was relatively spared. Therefore, this unique mouse model resembles subcortical band heterotopia observed in human. This model represents a new and rare tool to better understand cortical development and to investigate future therapeutic strategies for refractory epilepsy.
Resumo:
THESIS ABSTRACTThis thesis project was aimed at studying the molecular mechanisms underlying learning and memory formation, in particular as they relate to the metabolic coupling between astrocytes and neurons. For that, changes in the metabolic activity of different mice brain regions after 1 or 9 days of training in an eight-arm radial maze were assessed by (14C) 2-deoxyglucose (2DG) autoradiography. Significant differences in the areas engaged during the behavioral task at day 1 (when animals are confronted for the first time to the learning task) and at day 9 (when animals are highly performing) have been identified. These areas include the hippocampus, the fornix, the parietal cortex, the laterodorsal thalamic nucleus and the mammillary bodies at day 1 ; and the anterior cingulate, the retrosplenial cortex and the dorsal striatum at day 9. Two of these cerebral regions (those presenting the greatest changes at day 1 and day 9: the hippocampus and the retrosplenial cortex, respectively) were microdissected by laser capture microscopy and selected genes related to neuron-glia metabolic coupling, glucose metabolism and synaptic plasticity were analyzed by RT-PCR. 2DG and gene expression analysis were performed at three different times: 1) immediately after the end of the behavioral paradigm, 2) 45 minutes and 3) 6 hours after training. The main goal of this study was the identification of the metabolic adaptations following the learning task. Gene expression results demonstrate that the learning task profoundly modulates the pattern of gene expression in time, meaning that these two cerebral regions with high 2DG signal (hippocampus and retrosplenial cortex) have adapted their metabolic molecular machinery in consequence. Almost all studied genes show a higher expression in the hippocampus at day 1 compared to day 9, while an increased expression was found in the retrosplenial cortex at day 9. We can observe these molecular adaptations with a short delay of 45 minutes after the end of the task. However, 6 hours after training a high gene expression was found at day 9 (compared to day 1) in both regions, suggesting that only one day of training is not sufficient to detect transcriptional modifications several hours after the task. Thus, gene expression data match 2DG results indicating a transfer of information in time (from day 1 to day 9) and in space (from the hippocampus to the retrosplenial cortex), and this at a cellular and a molecular level. Moreover, learning seems to modify the neuron-glia metabolic coupling, since several genes involved in this coupling are induced. These results also suggest a role of glia in neuronal plasticity.RESUME DU TRAVAIL DE THESECe projet de thèse a eu pour but l'étude des mécanismes moléculaires qui sont impliqués dans l'apprentissage et la mémoire et, en particulier, à les mettre en rapport avec le couplage métabolique existant entre les astrocytes et les neurones. Pour cela, des changements de l'activité métabolique dans différentes régions du cerveau des souris après 1 ou 9 jours d'entraînement dans un labyrinthe radial à huit-bras ont été évalués par autoradiographie au 2-désoxyglucose (2DG). Des différences significatives dans les régions engagées pendant la tâche comportementale au jour 1 (quand les animaux sont confrontés pour la première fois à la tâche) et au jour 9 (quand les animaux ont déjà appris) ont été identifiés. Ces régions incluent, au jour 1, l'hippocampe, le fornix, le cortex pariétal, le noyau thalamic laterodorsal et les corps mamillaires; et, au jour 9, le cingulaire antérieur, le cortex retrosplenial et le striatum dorsal. Deux de ces régions cérébrales (celles présentant les plus grands changements à jour 1 et à jour 9: l'hippocampe et le cortex retrosplenial, respectivement) ont été découpées par microdissection au laser et quelques gènes liés au couplage métabolique neurone-glie, au métabolisme du glucose et à la plasticité synaptique ont été analysées par RT-PCR. L'étude 2DG et l'analyse de l'expression de gènes ont été exécutés à trois temps différents: 1) juste après entraînement, 2) 45 minutes et 3) 6 heures après la fin de la tâche. L'objectif principal de cette étude était l'identification des adaptations métaboliques suivant la tâche d'apprentissage. Les résultats de l'expression de gènes démontrent que la tâche d'apprentissage module profondément le profile d'expression des gènes dans le temps, signifiant que ces deux régions cérébrales avec un signal 2DG élevé (l'hippocampe et le cortex retrosplenial) ont adapté leurs « machines moléculaires » en conséquence. Presque tous les gènes étudiés montrent une expression plus élevée dans l'hippocampe au jour 1 comparé au jour 9, alors qu'une expression accrue a été trouvée dans le cortex retrosplenial au jour 9. Nous pouvons observer ces adaptations moléculaires avec un retard court de 45 minutes après la fin de la tâche. Cependant, 6 heures après l'entraînement, une expression de gènes élevée a été trouvée au jour 9 (comparé à jour 1) dans les deux régions, suggérant que seulement un jour d'entraînement ne suffit pas pour détecter des modifications transcriptionelles plusieurs heures après la tâche. Ainsi, les données d'expression de gènes corroborent les résultats 2DG indiquant un transfert d'information dans le temps (de jour 1 à jour 9) et dans l'espace (de l'hippocampe au cortex retrosplenial), et ceci à un niveau cellulaire et moléculaire. D'ailleurs, la tâche d'apprentissage semble modifier le couplage métabolique neurone-glie, puisque de nombreux gènes impliqués dans ce couplage sont induits. Ces observations suggèrent un rôle important de la glie dans les mécanismes de plasticité du système nerveux.
Resumo:
In this paper we study the role of incomplete ex ante contracts for ex post trade. Previous experimental evidence indicates that a contract provides a reference point for entitlements when the terms are negotiated in a competitive market. We show that this finding no longer holds when the terms are determined in a non-competitive way. Our results imply that the presence of a "fundamental transformation" (i.e., the transition from a competitive market to a bilateral relationship) is important for a contract to become a reference point. To the best of our knowledge this behavioral aspect of the fundamental transformation has not been shown before.
Resumo:
The last several years have seen an increasing number of studies that describe effects of oxytocin and vasopressin on the behavior of animals or humans. Studies in humans have reported behavioral changes and, through fMRI, effects on brain function. These studies are paralleled by a large number of reports, mostly in rodents, that have also demonstrated neuromodulatory effects by oxytocin and vasopressin at the circuit level in specific brain regions. It is the scope of this review to give a summary of the most recent neuromodulatory findings in rodents with the aim of providing a potential neurophysiological basis for their behavioral effects. At the same time, these findings may point to promising areas for further translational research towards human applications.