256 resultados para Automatic Image Annotation
Resumo:
A significant part of daily energy expenditure may be attributed to non-exercise activity thermogenesis and exercise activity thermogenesis. Automatic recognition of postural allocations such as standing or sitting can be used in behavioral modification programs aimed at minimizing static postures. In this paper we propose a shoe-based device and related pattern recognition methodology for recognition of postural allocations. Inexpensive technology allows implementation of this methodology as a part of footwear. The experimental results suggest high efficiency and reliability of the proposed approach.
Resumo:
BACKGROUND AND STUDY AIMS: The current gold standard in Barrett's esophagus monitoring consists of four-quadrant biopsies every 1-2 cm in accordance with the Seattle protocol. Adding brush cytology processed by digital image cytometry (DICM) may further increase the detection of patients with Barrett's esophagus who are at risk of neoplasia. The aim of the present study was to assess the additional diagnostic value and accuracy of DICM when added to the standard histological analysis in a cross-sectional multicenter study of patients with Barrett's esophagus in Switzerland. METHODS: One hundred sixty-four patients with Barrett's esophagus underwent 239 endoscopies with biopsy and brush cytology. DICM was carried out on 239 cytology specimens. Measures of the test accuracy of DICM (relative risk, sensitivity, specificity, likelihood ratios) were obtained by dichotomizing the histopathology results (high-grade dysplasia or adenocarcinoma vs. all others) and DICM results (aneuploidy/intermediate pattern vs. diploidy). RESULTS: DICM revealed diploidy in 83% of 239 endoscopies, an intermediate pattern in 8.8%, and aneuploidy in 8.4%. An intermediate DICM result carried a relative risk (RR) of 12 and aneuploidy a RR of 27 for high-grade dysplasia/adenocarcinoma. Adding DICM to the standard biopsy protocol, a pathological cytometry result (aneuploid or intermediate) was found in 25 of 239 endoscopies (11%; 18 patients) with low-risk histology (no high-grade dysplasia or adenocarcinoma). During follow-up of 14 of these 18 patients, histological deterioration was seen in 3 (21%). CONCLUSION: DICM from brush cytology may add important information to a standard biopsy protocol by identifying a subgroup of BE-patients with high-risk cellular abnormalities.
Resumo:
This paper proposes a novel approach for the analysis of illicit tablets based on their visual characteristics. In particular, the paper concentrates on the problem of ecstasy pill seizure profiling and monitoring. The presented method extracts the visual information from pill images and builds a representation of it, i.e. it builds a pill profile based on the pill visual appearance. Different visual features are used to build different image similarity measures, which are the basis for a pill monitoring strategy based on both discriminative and clustering models. The discriminative model permits to infer whether two pills come from the same seizure, while the clustering models groups of pills that share similar visual characteristics. The resulting clustering structure allows to perform a visual identification of the relationships between different seizures. The proposed approach was evaluated using a data set of 621 Ecstasy pill pictures. The results demonstrate that this is a feasible and cost effective method for performing pill profiling and monitoring.
Resumo:
The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.
Resumo:
Recent studies at high magnetic fields using the phase of gradient-echo MR images have shown the ability to unveil cortical substructure in the human brain. To investigate the contrast mechanisms in phase imaging, this study extends, for the first time, phase imaging to the rodent brain. Using a 14.1 T horizontal bore animal MRI scanner for in vivo micro-imaging, images with an in-plane resolution of 33 microm were acquired. Phase images revealed, often more clearly than the corresponding magnitude images, hippocampal fields, cortical layers (e.g. layer 4), cerebellar layers (molecular and granule cell layers) and small white matter structures present in the striatum and septal nucleus. The contrast of the phase images depended in part on the orientation of anatomical structures relative to the magnetic field, consistent with bulk susceptibility variations between tissues. This was found not only for vessels, but also for white matter structures, such as the anterior commissure, and cortical layers in the cerebellum. Such susceptibility changes could result from variable blood volume. However, when the deoxyhemoglobin content was reduced by increasing cerebral blood flow (CBF) with a carbogen breathing challenge, contrast between white and gray matter and cortical layers was not affected, suggesting that tissue cerebral blood volume (and therefore deoxyhemoglobin) is not a major source of the tissue phase contrast. We conclude that phase variations in gradient-echo images are likely due to susceptibility shifts of non-vascular origin.
Resumo:
OBJECTIVE: To test a method that allows automatic set-up of the ventilator controls at the onset of ventilation. DESIGN: Prospective randomized crossover study. SETTING: ICUs in one adult and one children's hospital in Switzerland. PATIENTS: Thirty intubated stable, critically ill patients (20 adults and 10 children). INTERVENTIONS: The patients were ventilated during two 20-min periods using a modified Hamilton AMADEUS ventilator. During the control period the ventilator settings were chosen immediately prior to the study. During the other period individual settings were automatically determined by the ventilatior (AutoInit). MEASUREMENTS AND RESULTS: Pressure, flow, and instantaneous CO2 concentration were measured at the airway opening. From these measurements, series dead space (V(DS)), expiratory time constant (RC), tidal volume (VT, total respiratory frequency (f(tot), minute ventilation (MV), and maximal and mean airway pressure (Paw, max and Paw, mean) were calculated. Arterial blood gases were analyzed at the end of each period. Paw, max was significantly less with the AutoInit ventilator settings while f(tot) was significantly greater (P < 0.05). The other values were not statistically significant. CONCLUSIONS: The AutoInit ventilator settings, which were automatically derived, were acceptable for all patients for a period of 20 min and were not found to be inferior to the control ventilator settings. This makes the AutoInit method potentially useful as an automatic start-up procedure for mechanical ventilation.
Resumo:
PURPOSE: To compare examination time with radiologist time and to measure radiation dose of computed tomographic (CT) fluoroscopy, conventional CT, and conventional fluoroscopy as guiding modalities for shoulder CT arthrography. MATERIALS AND METHODS: Glenohumeral injection of contrast material for CT arthrography was performed in 64 consecutive patients (mean age, 32 years; age range, 16-74 years) and was guided with CT fluoroscopy (n = 28), conventional CT (n = 14), or conventional fluoroscopy (n = 22). Room times (arthrography, room change, CT, and total examination times) and radiologist times (time the radiologist spent in the fluoroscopy or CT room) were measured. One-way analysis of variance and Bonferroni-Dunn posthoc tests were performed for comparison of mean times. Mean effective radiation dose was calculated for each method with examination data, phantom measurements, and standard software. RESULTS: Mean total examination time was 28.0 minutes for CT fluoroscopy, 28.6 minutes for conventional CT, and 29.4 minutes for conventional fluoroscopy; mean radiologist time was 9.9 minutes, 10.5 minutes, and 9.0 minutes, respectively. These differences were not statistically significant. Mean effective radiation dose was 0.0015 mSv for conventional fluoroscopy (mean, nine sections), 0.22 mSv for CT fluoroscopy (120 kV; 50 mA; mean, 15 sections), and 0.96 mSv for conventional CT (140 kV; 240 mA; mean, six sections). Effective radiation dose can be reduced to 0.18 mSv for conventional CT by changing imaging parameters to 120 kV and 100 mA. Mean effective radiation dose of the diagnostic CT arthrographic examination (140 kV; 240 mA; mean, 25 sections) was 2.4 mSv. CONCLUSION: CT fluoroscopy and conventional CT are valuable alternative modalities for glenohumeral CT arthrography, as examination and radiologist times are not significantly different. CT guidance requires a greater radiation dose than does conventional fluoroscopy, but with adequate parameters CT guidance constitutes approximately 8% of the radiation dose.
Resumo:
BACKGROUND: Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. OBJECTIVE: To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. MATERIALS AND METHODS: Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI(vol) 4.8-7.9 mGy, DLP 37.1-178.9 mGy·cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. RESULTS: The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. CONCLUSION: Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone.
Resumo:
The trabecular bone score (TBS) is a gray-level textural metric that can be extracted from the two-dimensional lumbar spine dual-energy X-ray absorptiometry (DXA) image. TBS is related to bone microarchitecture and provides skeletal information that is not captured from the standard bone mineral density (BMD) measurement. Based on experimental variograms of the projected DXA image, TBS has the potential to discern differences between DXA scans that show similar BMD measurements. An elevated TBS value correlates with better skeletal microstructure; a low TBS value correlates with weaker skeletal microstructure. Lumbar spine TBS has been evaluated in cross-sectional and longitudinal studies. The following conclusions are based upon publications reviewed in this article: 1) TBS gives lower values in postmenopausal women and in men with previous fragility fractures than their nonfractured counterparts; 2) TBS is complementary to data available by lumbar spine DXA measurements; 3) TBS results are lower in women who have sustained a fragility fracture but in whom DXA does not indicate osteoporosis or even osteopenia; 4) TBS predicts fracture risk as well as lumbar spine BMD measurements in postmenopausal women; 5) efficacious therapies for osteoporosis differ in the extent to which they influence the TBS; 6) TBS is associated with fracture risk in individuals with conditions related to reduced bone mass or bone quality. Based on these data, lumbar spine TBS holds promise as an emerging technology that could well become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment.
Resumo:
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.