184 resultados para Artéria cerebral média
Resumo:
Antonio Damasio's works have brought emotions into line with current trends in neuroscience. They are conceived as the addition, to a perception, of the somatic effects it has induced. Nevertheless, this continuous and relatively steady process of body perception has also led to the less-known hypothesis of the "neural self." Behind the explicit and apparently contradictory reference to William James and Sigmund Freud, there lies a common source: Theodor Meynert's conception of a "cortical self." Our aim is to enlight a stream unified around what we call here "cerebral self." The Self is thus considered as the cerebral projection or presentation of the body. The specificity of this notion is particularly highlighted by its confrontation to the closely, yet disembodied, notion of "cerebral subject.". Pour citer cette revue : Psychiatr. Sci. Hum. Neurosci. 9 (2011).
Resumo:
We hypothesized that a function of sleep is to replenish brain glycogen stores that become depleted while awake. We have previously tested this hypothesis in three inbred strains of mice by measuring brain glycogen after a 6h sleep deprivation (SD). Unexpectedly, glycogen content in the cerebral cortex did not decrease with SD in two of the strains and was even found to increase in mice of the C57BL/6J (B6) strain. Manipulations that initially induce glycogenolysis can also induce subsequent glycogen synthesis thereby elevating glycogen content beyond baseline. It is thus possible that in B6 mice, cortical glycogen content decreased early during SD and became elevated later in SD. In the present study, we therefore measured changes in brain glycogen over the course of a 6 h SD and during recovery sleep in B6 mice. We found no evidence of a decrease at any time during the SD, instead, cortical glycogen content monotonically increased with time-spent-awake and, when sleep was allowed, started to revert to control levels. Such a time-course is opposite to the one predicted by our initial hypothesis. These results demonstrate that glycogen synthesis can be achieved during prolonged wakefulness to the extent that it outweighs glycogenolysis. Maintaining this energy store seems thus not to be functionally related to sleep in this strain.
Resumo:
The outcome of infection depends on multiple layers of immune regulation, with innate immunity playing a decisive role in shaping protection or pathogenic sequelae of acquired immunity. The contribution of pattern recognition receptors and adaptor molecules in immunity to malaria remains poorly understood. Here, we interrogate the role of the caspase recruitment domain-containing protein 9 (CARD9) signaling pathway in the development of experimental cerebral malaria (ECM) using the murine Plasmodium berghei ANKA infection model. CARD9 expression was upregulated in the brains of infected wild-type (WT) mice, suggesting a potential role for this pathway in ECM pathogenesis. However, P. berghei ANKA-infected Card9(-/-) mice succumbed to neurological signs and presented with disrupted blood-brain barriers similar to WT mice. Furthermore, consistent with the immunological features associated with ECM in WT mice, Card9(-/-) mice revealed (i) elevated levels of proinflammatory responses, (ii) high frequencies of activated T cells, and (iii) CD8(+) T cell arrest in the cerebral microvasculature. We conclude that ECM develops independently of the CARD9 signaling pathway.
Resumo:
The aim of this study was to locate the breakpoints of cerebral and muscle oxygenation and muscle electrical activity during a ramp exercise in reference to the first and second ventilatory thresholds. Twenty-five cyclists completed a maximal ramp test on an electromagnetically braked cycle-ergometer with a rate of increment of 25 W/min. Expired gazes (breath-by-breath), prefrontal cortex and vastus lateralis (VL) oxygenation [Near-infrared spectroscopy (NIRS)] together with electromyographic (EMG) Root Mean Square (RMS) activity for the VL, rectus femoris (RF), and biceps femoris (BF) muscles were continuously assessed. There was a non-linear increase in both cerebral deoxyhemoglobin (at 56 ± 13% of the exercise) and oxyhemoglobin (56 ± 8% of exercise) concomitantly to the first ventilatory threshold (57 ± 6% of exercise, p > 0.86, Cohen's d < 0.1). Cerebral deoxyhemoglobin further increased (87 ± 10% of exercise) while oxyhemoglobin reached a plateau/decreased (86 ± 8% of exercise) after the second ventilatory threshold (81 ± 6% of exercise, p < 0.05, d > 0.8). We identified one threshold only for muscle parameters with a non-linear decrease in muscle oxyhemoglobin (78 ± 9% of exercise), attenuation in muscle deoxyhemoglobin (80 ± 8% of exercise), and increase in EMG activity of VL (89 ± 5% of exercise), RF (82 ± 14% of exercise), and BF (85 ± 9% of exercise). The thresholds in BF and VL EMG activity occurred after the second ventilatory threshold (p < 0.05, d > 0.6). Our results suggest that the metabolic and ventilatory events characterizing this latter cardiopulmonary threshold may affect both cerebral and muscle oxygenation levels, and in turn, muscle recruitment responses.
Hommes et femmes: la même organisation cérébrale ? [Men and women: the same cerebral organisation ?]
Resumo:
Des différences entre les hommes et les femmes en ce qui concerne la taille du cerveau, les compétences dans des domaines particuliers et la récupération suite aux lésions cérébrales ont soulevé la question des dissimilitudes d'organisation cérébrale entre les deux sexes. Interprétée tout d'abord comme touchant à la latéralisation des fonctions cognitives, cette différence se révèle aujourd'hui davantage liée au fonctionnement des réseaux neuronaux.
Resumo:
BACKGROUND: Management of ischemic stroke in the presence of aneurysmal brain disease is controversial. Recent retrospective evidence suggests that in selected patients, intravenous thrombolysis (IVT) remains a safe approach for reperfusion. METHODS: We document a case of post-thrombolysis aneurysmal rupture. Supported by additional scientific literature we postulate that acute aneurysmal thrombosis leading to stroke in the culprit artery may be an ominous sign of rupture and should be considered separately from fortuitously discovered distant aneurysmal disease. RESULTS: A 71-year-old female presented with an acute right middle cerebral artery stroke syndrome. IVT allowed vessel reperfusion and revealed a previously concealed, juxtaposed non-giant M1 segment saccular aneurysm. Secondary aneurysmal rupture ensued. The aneurysm was secured by surgical clipping. Postoperative course was uneventful. CONCLUSIONS: This case shows that despite reports of thrombolysis safety in the presence of brain aneurysms, thrombolysis remains potentially hazardous and hints toward an increased risk when the stroke arises on the parent vessel itself.
Resumo:
Meningitis due to Streptococcus pneumoniae is a rare complication of trans-sphenoidal surgery. We present the case of a patient who developed pneumococcal meningitis with associated bacteraemia after elective endoscopic trans-sphenoidal resection of a pituitary macro-adenoma. After initial treatment with ceftriaxone and dexamethasone, the patient made a good recovery and dexamethasone was discontinued. Two days later the patient's condition deteriorated rapidly, presenting focal and diffuse neurological deficits. Cerebral MRI revealed widespread punctate ischaemic-type lesions affecting both anterior and posterior vascular territories bilaterally and involving features consistent with cerebral vasculitis. Antibiotic treatment was broadened to include meropenem and dexamethasone was restarted, but the patient remained in a comatose state and died 14 days later. Steroid treatment may play a dual role in this poorly characterised infectious complication of trans-sphenoidal pituitary surgery. This possibility is discussed and the options for prophylaxis are reviewed.
Resumo:
Antemortem demonstration of ischemia has proved elusive in head injury because regional CBF reductions may represent hypoperfusion appropriately coupled to hypometabolism. Fifteen patients underwent positron emission tomography within 24 hours of head injury to map cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), and oxygen extraction fraction (OEF). We estimated the volume of ischemic brain (IBV) and used the standard deviation of the OEF distribution to estimate the efficiency of coupling between CBF and CMRO2. The IBV in patients was significantly higher than controls (67 +/- 69 vs. 2 +/- 3 mL; P < 0.01). The coexistence of relative ischemia and hyperemia in some patients implies mismatching of perfusion to oxygen use. Whereas the saturation of jugular bulb blood (SjO2) correlated with the IBV (r = 0.8, P < 0.01), SjO2 values of 50% were only achieved at an IBV of 170 +/- 63 mL (mean +/- 95% CI), which equates to 13 +/- 5% of the brain. Increases in IBV correlated with a poor Glasgow Outcome Score 6 months after injury (rho = -0.6, P < 0.05). These results suggest significant ischemia within the first day after head injury. The ischemic burden represented by this "traumatic penumbra" is poorly detected by bedside clinical monitors and has significant associations with outcome.
Resumo:
OBJECTIVE: It is known that exogenous lactate given as an i.v. energy infusion is able to counteract a neuroglycopenic state that developed during psychosocial stress. It is unknown, however, whether the brain under stressful conditions can induce a rise in plasma lactate to satisfy its increased needs during stress. Since lactate is i) an alternative cerebral energy substrate to glucose and ii) its plasmatic concentration is influenced by the sympathetic nervous system, the present study aimed at investigating whether plasma lactate concentrations increase with psychosocial stress in humans. METHODS: 30 healthy young men participated in two sessions (stress induced by the Trier Social Stress Test and a non-stress control session). Blood samples were frequently taken to assess plasma lactate concentrations and stress hormone profiles. RESULTS: Plasma lactate increased 47% during psychosocial stress (from 0.9 ± 0.05 to 1.4 ± 0.1 mmol/l; interaction time × stress intervention: F = 19.7, p < 0.001). This increase in lactate concentrations during stress was associated with an increase in epinephrine (R(2) = 0.221, p = 0.02) and ACTH concentrations (R(2) = 0.460, p < 0.001). CONCLUSION: Plasma lactate concentrations increase during acute psychosocial stress in humans. This finding suggests the existence of a demand mechanism that functions to allocate an additional source of energy from the body towards the brain, which we refer to as 'cerebral lactate demand'.
Resumo:
A better prediction of the outcome after ischemia and estimation of onset time at early time points would greatly facilitate clinical decisions. Therefore, the aim of the present study was to use magnetic resonance spectroscopy to identify neurochemical markers for outcome prediction at early time points after ischemia.ICR-CD1 mice were subjected to 10-minute, 30-minute or permanent middle cerebral artery occlusion (MCAO). The regional cerebral blood flow (CBF) was monitored in all animals by laser-Doppler flowmetry. All MR studies were carried out in a horizontal 14.1T magnet. Fast spin echo images with T2-weighted parameters were Bacquired to localize the volume of interest and evaluate the lesion size. Immediately after adjustment of field inhomogeneities, localized 1H MRS was applied to obtain the neurochemical profile from the striatum (6-8 μl) or the cortex (2.2-2.5 μl). Six animals (sham group) underwent nearly identical procedures without MCAO.By comparing the evolution of several metabolites in ischemia of varying severity, we observed that glutamine increases early after transient ischemia independently of severity, but decreases in permanent ischemia. On the opposite, GABA increased in permanent ischemia and decreased in transient. We also observed a decrease in the sum of N-acetyl aspartate + glutamate + taurine in all irreversibly damaged tissues, independently of reperfusion and severity. Finally, we have observed that some metabolites decrease exponentially after ischemia. This exponential decrease could be used to determine the time of ischemia onset in permanent ischemia.In Conclusion, magnetic resonance spectroscopy can be used as a prognostic and diagnostic tool to monitor reperfusion, identify reversibly and irreversibly damaged tissue and evaluate the time of ischemia onset. If these Results can be translated to stroke patients, this technique would greatly improve the diagnosis and help with clinical decisions.
Resumo:
Cerebral perfusion-weighted imaging (PWI) in neonates is known to be technically difficult and there are very few published studies on its use in preterm infants. In this paper, we describe one convenient method to perform PWI in neonates, a method only recently used in newborns. A device was used to manually inject gadolinium contrast material intravenously in an easy, quick and reproducible way. We studied 28 newborn infants, with various gestational ages and weights, including both normal infants and those suffering from different brain pathologies. A signal intensity-time curve was obtained for each infant, allowing us to build perfusion maps. This technique offered a fast and easy method to manually inject a bolus gadolinium contrast material, which is essential in performing PWI in neonates. Cerebral PWI is technically feasible and reproducible in neonates of various gestational age and with various pathologies.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are a potential target for neuroprotection in focal ischemic stroke. These nuclear receptors have major effects in lipid metabolism, but they are also involved in inflammatory processes. Three PPAR isotypes have been identified: alpha, beta (or delta) and gamma. The development of PPAR transgenic mice offers a promising tool for prospective therapeutic studies. This study used MRI to assess the role of PPARalpha and PPARbeta in the development of stroke. Permanent middle cerebral artery occlusion induced focal ischemia in wild-type, PPARalpha-null mice and PPARbeta-null mice. T(2)-weighted MRI was performed with a 7 T MRI scan on day 0, 1, 3, 7 and 14 to monitor lesion growth in the various genotypes. General Linear Model statistical analysis found a significant difference in lesion volume between wild-type and PPAR-null mice for both alpha and beta isotypes. These data validate high-resolution MRI for monitoring cerebral ischemic lesions, and confirm the neuroprotective role of PPARalpha and PPARbeta in the brain.
Resumo:
The disturbances of the cholesterol synthesis and metabolism described in Alzheimer's disease (AD) may be both a consequence of the neurodegenerative process and a contributor to the pathogenesis. These putative relationships and their underlying mechanisms are not well understood. The aim of this study was to evaluate the relationship between the cerebral and extracerebral cholesterol synthesis and metabolism, and the AD pathology as reflected by CSF markers in humans. We evaluated the relationships between the plasma and the cerebrospinal fluid (CSF) concentrations of cholesterol, the cholesterol precursors lanosterol, lathosterol and desmosterol, and the cholesterol elimination products 24S-hydroxycholesterol and 27-hydroxycholesterol, and the CSF markers for AD pathology Aβ1-42 and p-tau181 in 86 subjects with normal cognition and in 107 AD patients. CSF desmosterol, cholesterol and 24S-hydroxycholesterol in the AD group, and CSF 24S-hydroxycholesterol in the control group correlated with the p-tau181 levels. Neither CSF nor plasma concentrations of the included compounds correlated with the CSF Aβ1-42 levels. In multivariate regression tests including age, gender, albumin ratio, number of the APOEε4 alleles, and diagnosis, p-tau181 levels independently predicted the CSF desmosterol, cholesterol and 24S-hydroxycholesterol concentrations. The associations remained significant for CSF cholesterol and 24S-hydroxycholesterol when analyses were separately performed in the AD group. The results suggest that alterations of CNS cholesterol de novo genesis and metabolism are related to neurodegeneration and in particular to the cerebral accumulation of phosphorylated tau.