141 resultados para Algorithms genetics
Resumo:
The ability to determine the location and relative strength of all transcription-factor binding sites in a genome is important both for a comprehensive understanding of gene regulation and for effective promoter engineering in biotechnological applications. Here we present a bioinformatically driven experimental method to accurately define the DNA-binding sequence specificity of transcription factors. A generalized profile was used as a predictive quantitative model for binding sites, and its parameters were estimated from in vitro-selected ligands using standard hidden Markov model training algorithms. Computer simulations showed that several thousand low- to medium-affinity sequences are required to generate a profile of desired accuracy. To produce data on this scale, we applied high-throughput genomics methods to the biochemical problem addressed here. A method combining systematic evolution of ligands by exponential enrichment (SELEX) and serial analysis of gene expression (SAGE) protocols was coupled to an automated quality-controlled sequence extraction procedure based on Phred quality scores. This allowed the sequencing of a database of more than 10,000 potential DNA ligands for the CTF/NFI transcription factor. The resulting binding-site model defines the sequence specificity of this protein with a high degree of accuracy not achieved earlier and thereby makes it possible to identify previously unknown regulatory sequences in genomic DNA. A covariance analysis of the selected sites revealed non-independent base preferences at different nucleotide positions, providing insight into the binding mechanism.
Resumo:
Amplified Fragment Length Polymorphisms (AFLPs) are a cheap and efficient protocol for generating large sets of genetic markers. This technique has become increasingly used during the last decade in various fields of biology, including population genomics, phylogeography, and genome mapping. Here, we present RawGeno, an R library dedicated to the automated scoring of AFLPs (i.e., the coding of electropherogram signals into ready-to-use datasets). Our program includes a complete suite of tools for binning, editing, visualizing, and exporting results obtained from AFLP experiments. RawGeno can either be used with command lines and program analysis routines or through a user-friendly graphical user interface. We describe the whole RawGeno pipeline along with recommendations for (a) setting the analysis of electropherograms in combination with PeakScanner, a program freely distributed by Applied Biosystems; (b) performing quality checks; (c) defining bins and proceeding to scoring; (d) filtering nonoptimal bins; and (e) exporting results in different formats.
Resumo:
Global human genetic variation is greatly influenced by geography, with genetic differentiation between populations increasing with geographic distance and within-population diversity decreasing with distance from Africa. In fact, these 'clines' can explain most of the variation in human populations. Despite this, population genetics inferences often rely on models that do not take geography into account, which could result in misleading conclusions when working at global geographic scales. Geographically explicit approaches have great potential for the study of human population genetics. Here, we discuss the most promising avenues of research in the context of human settlement history and the detection of genomic elements under natural selection. We also review recent technical advances and address the challenges of integrating geography and genetics.
Resumo:
Narcolepsy is a neurological disorder characterized by excessive daytime sleepiness and cataplexy. The hypocretin/orexin deficiency is likely to be the key to its pathophysiology in most of cases although the cause of human narcolepsy remains elusive. Acting on a specific genetic background, an autoimmune process targeting hypocretin neurons in response to yet unknown environmental factors is the most probable hypothesis in most cases of human narcolepsy with cataplexy. Although narcolepsy presents one of the tightest associations with a specific human leukocyte antigen (HLA) (DQB1*0602), there is strong evidence that non-HLA genes also confer susceptibility. In addition to a point mutation in the prepro-hypocretin gene discovered in an atypical case, a few polymorphisms in monoaminergic and immune-related genes have been reported associated with narcolepsy. The treatment of narcolepsy has evolved significantly over the last few years. Available treatments include stimulants for hypersomnia with the quite recent widespread use of modafinil, antidepressants for cataplexy, and gamma-hydroxybutyrate for both symptoms. Recent pilot open trials with intravenous immunoglobulins appear an effective treatment of cataplexy if applied at early stages of narcolepsy. Finally, the discovery of hypocretin deficiency might open up new treatment perspectives.
Resumo:
Invasive candidiasis and aspergillosis are major complications in surgical and onco-hematological patients, and still associated with an important morbidity and mortality. A large number of studies highlighted the potential role of host genetic polymorphisms that may influence susceptibility to fungal pathogens, but many were limited by insufficient statistical power, problematic design, and/or lack of replication. However, some relevant polymorphisms are now emerging from well-conducted studies whose associations have been replicated and/or are supported by strong biological evidence. Such polymorphisms together with other biomarkers may play a role in the prediction, diagnosis, and management of severe fungal infections in high-risk patients in the coming years.
Resumo:
MicroRNAs (miRs) are involved in the pathogenesis of several neoplasms; however, there are no data on their expression patterns and possible roles in adrenocortical tumors. Our objective was to study adrenocortical tumors by an integrative bioinformatics analysis involving miR and transcriptomics profiling, pathway analysis, and a novel, tissue-specific miR target prediction approach. Thirty-six tissue samples including normal adrenocortical tissues, benign adenomas, and adrenocortical carcinomas (ACC) were studied by simultaneous miR and mRNA profiling. A novel data-processing software was used to identify all predicted miR-mRNA interactions retrieved from PicTar, TargetScan, and miRBase. Tissue-specific target prediction was achieved by filtering out mRNAs with undetectable expression and searching for mRNA targets with inverse expression alterations as their regulatory miRs. Target sets and significant microarray data were subjected to Ingenuity Pathway Analysis. Six miRs with significantly different expression were found. miR-184 and miR-503 showed significantly higher, whereas miR-511 and miR-214 showed significantly lower expression in ACCs than in other groups. Expression of miR-210 was significantly lower in cortisol-secreting adenomas than in ACCs. By calculating the difference between dCT(miR-511) and dCT(miR-503) (delta cycle threshold), ACCs could be distinguished from benign adenomas with high sensitivity and specificity. Pathway analysis revealed the possible involvement of G2/M checkpoint damage in ACC pathogenesis. To our knowledge, this is the first report describing miR expression patterns and pathway analysis in sporadic adrenocortical tumors. miR biomarkers may be helpful for the diagnosis of adrenocortical malignancy. This tissue-specific target prediction approach may be used in other tumors too.
Resumo:
Variability in response to atypical antipsychotic drugs is due to genetic and environmental factors. Cytochrome P450 (CYP) isoforms are implicated in the metabolism of drugs, while the P-glycoprotein transporter (P-gp), encoded by the ABCB1 gene, may influence both the blood and brain drug concentrations. This study aimed to identify the possible associations of CYP and ABCB1 genetic polymorphisms with quetiapine and norquetiapine plasma and cerebrospinal fluid (CSF) concentrations and with response to treatment. Twenty-two patients with schizophrenia receiving 600 mg of quetiapine daily were genotyped for four CYP isoforms and ABCB1 polymorphisms. Quetiapine and norquetiapine peak plasma and CSF concentrations were measured after 4 weeks of treatment. Stepwise multiple regression analysis revealed that ABCB1 3435C > T (rs1045642), 2677G > T (rs2032582) and 1236C > T (rs1128503) polymorphisms predicted plasma quetiapine concentrations, explaining 41% of the variability (p = 0.001). Furthermore, the ABCB1 polymorphisms predicted 48% (p = 0.024) of the variability of the Δ PANSS total score, with the non-carriers of the 3435TT showing higher changes in the score. These results suggest that ABCB1 genetic polymorphisms may be a predictive marker of quetiapine treatment in schizophrenia.
Resumo:
PURPOSE: Mutations in IDH3B, an enzyme participating in the Krebs cycle, have recently been found to cause autosomal recessive retinitis pigmentosa (arRP). The MDH1 gene maps within the RP28 arRP linkage interval and encodes cytoplasmic malate dehydrogenase, an enzyme functionally related to IDH3B. As a proof of concept for candidate gene screening to be routinely performed by ultra high throughput sequencing (UHTs), we analyzed MDH1 in a patient from each of the two families described so far to show linkage between arRP and RP28. METHODS: With genomic long-range PCR, we amplified all introns and exons of the MDH1 gene (23.4 kb). PCR products were then sequenced by short-read UHTs with no further processing. Computer-based mapping of the reads and mutation detection were performed by three independent software packages. RESULTS: Despite the intrinsic complexity of human genome sequences, reads were easily mapped and analyzed, and all algorithms used provided the same results. The two patients were homozygous for all DNA variants identified in the region, which confirms previous linkage and homozygosity mapping results, but had different haplotypes, indicating genetic or allelic heterogeneity. None of the DNA changes detected could be associated with the disease. CONCLUSIONS: The MDH1 gene is not the cause of RP28-linked arRP. Our experimental strategy shows that long-range genomic PCR followed by UHTs provides an excellent system to perform a thorough screening of candidate genes for hereditary retinal degeneration.
Resumo:
In recent years, protein-ligand docking has become a powerful tool for drug development. Although several approaches suitable for high throughput screening are available, there is a need for methods able to identify binding modes with high accuracy. This accuracy is essential to reliably compute the binding free energy of the ligand. Such methods are needed when the binding mode of lead compounds is not determined experimentally but is needed for structure-based lead optimization. We present here a new docking software, called EADock, that aims at this goal. It uses an hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 A around the center of mass of the ligand position in the crystal structure, and on the contrary to other benchmarks, our algorithm was fed with optimized ligand positions up to 10 A root mean square deviation (RMSD) from the crystal structure, excluding the latter. This validation illustrates the efficiency of our sampling strategy, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures could be explained by the presence of crystal contacts in the experimental structure. Finally, the ability of EADock to accurately predict binding modes on a real application was illustrated by the successful docking of the RGD cyclic pentapeptide on the alphaVbeta3 integrin, starting far away from the binding pocket.
Resumo:
Accurate prediction of transcription factor binding sites is needed to unravel the function and regulation of genes discovered in genome sequencing projects. To evaluate current computer prediction tools, we have begun a systematic study of the sequence-specific DNA-binding of a transcription factor belonging to the CTF/NFI family. Using a systematic collection of rationally designed oligonucleotides combined with an in vitro DNA binding assay, we found that the sequence specificity of this protein cannot be represented by a simple consensus sequence or weight matrix. For instance, CTF/NFI uses a flexible DNA binding mode that allows for variations of the binding site length. From the experimental data, we derived a novel prediction method using a generalised profile as a binding site predictor. Experimental evaluation of the generalised profile indicated that it accurately predicts the binding affinity of the transcription factor to natural or synthetic DNA sequences. Furthermore, the in vitro measured binding affinities of a subset of oligonucleotides were found to correlate with their transcriptional activities in transfected cells. The combined computational-experimental approach exemplified in this work thus resulted in an accurate prediction method for CTF/NFI binding sites potentially functioning as regulatory regions in vivo.
Resumo:
Pharmacokinetic variability in drug levels represent for some drugs a major determinant of treatment success, since sub-therapeutic concentrations might lead to toxic reactions, treatment discontinuation or inefficacy. This is true for most antiretroviral drugs, which exhibit high inter-patient variability in their pharmacokinetics that has been partially explained by some genetic and non-genetic factors. The population pharmacokinetic approach represents a very useful tool for the description of the dose-concentration relationship, the quantification of variability in the target population of patients and the identification of influencing factors. It can thus be used to make predictions and dosage adjustment optimization based on Bayesian therapeutic drug monitoring (TDM). This approach has been used to characterize the pharmacokinetics of nevirapine (NVP) in 137 HIV-positive patients followed within the frame of a TDM program. Among tested covariates, body weight, co-administration of a cytochrome (CYP) 3A4 inducer or boosted atazanavir as well as elevated aspartate transaminases showed an effect on NVP elimination. In addition, genetic polymorphism in the CYP2B6 was associated with reduced NVP clearance. Altogether, these factors could explain 26% in NVP variability. Model-based simulations were used to compare the adequacy of different dosage regimens in relation to the therapeutic target associated with treatment efficacy. In conclusion, the population approach is very useful to characterize the pharmacokinetic profile of drugs in a population of interest. The quantification and the identification of the sources of variability is a rational approach to making optimal dosage decision for certain drugs administered chronically.