97 resultados para Affective stimulus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To summarize the literature on alexithymia in cancer patients. Methods: The empirical literature published between 1972 and January 2010 was searched through MEDLINE, PSYINFO, EMBASE and the Cochrane Library. Key words were: alexithymia, affective symptoms, cancer, neoplasms. Results: The search identified 16 relevant studies which are methodologically problematic and show conflicting results. However, several interesting hypotheses emerge such as a possible link between alexithymia and the immune system, between alexithymia and quality of life, or between alexithymia, anxiety and depression. The question to what degree alexithymia in cancer patients is a trait or a state cannot be answered by these studies. Conclusions: A lack of methodologically sound studies and the large variations of results among studies suggest that the role of alexithymia in patients with cancer deserves more systematic research. Consequently, studies are needed which investigate the nature (state or trait) of alexithymia, its impact on cancer development and progression, as well as its influence on compliance and on the underestimation of psychological distress and psychiatric outcome in cancer patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to characterize the discharge properties of single neurons in the dorsal nucleus of the lateral lemniscus (DNLL) of the rat. In the absence of acoustic stimulation, two types of spontaneous discharge patterns were observed: units tended to fire in a bursting or in a nonbursting mode. The distribution of units in the DNLL based on spontaneous firing rate followed a rostrocaudal gradient: units with high spontaneous rates were most commonly located in the rostral part of the DNLL, whereas in the caudal part units had lower spontaneous discharge rates. The most common response pattern of DNLL units to 200 ms binaural noise bursts contained a prominent onset response followed by a lower but steady-state response and an inhibitory response in the early-off period. Thresholds of response to noise bursts were on average higher for DNLL units than for units recorded in the inferior colliculus under the same experimental conditions. The DNLL units were arranged according to a mediolateral sensitivity gradient with the lowest threshold units in the most lateral part of the nucleus. In the rat, as in other mammals, the most common DNLL binaural input type was an excitatory response to contralateral ear stimulation and inhibitory response to ipsilateral ear stimulation (EI type). Pure tone bursts were in general a more effective stimulus compared to noise bursts. Best frequency (BF) was established for 97 DNLL units and plotted according to their spatial location. The DNLL exhibits a loose tonotopic organization, where there is a concentric pattern with high BF units located in the most dorsal and ventral parts of the DNLL and lower BF units in the middle part of the nucleus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interaural intensity and time differences (IID and ITD) are two binaural auditory cues for localizing sounds in space. This study investigated the spatio-temporal brain mechanisms for processing and integrating IID and ITD cues in humans. Auditory-evoked potentials were recorded, while subjects passively listened to noise bursts lateralized with IID, ITD or both cues simultaneously, as well as a more frequent centrally presented noise. In a separate psychophysical experiment, subjects actively discriminated lateralized from centrally presented stimuli. IID and ITD cues elicited different electric field topographies starting at approximately 75 ms post-stimulus onset, indicative of the engagement of distinct cortical networks. By contrast, no performance differences were observed between IID and ITD cues during the psychophysical experiment. Subjects did, however, respond significantly faster and more accurately when both cues were presented simultaneously. This performance facilitation exceeded predictions from probability summation, suggestive of interactions in neural processing of IID and ITD cues. Supra-additive neural response interactions as well as topographic modulations were indeed observed approximately 200 ms post-stimulus for the comparison of responses to the simultaneous presentation of both cues with the mean of those to separate IID and ITD cues. Source estimations revealed differential processing of IID and ITD cues initially within superior temporal cortices and also at later stages within temporo-parietal and inferior frontal cortices. Differences were principally in terms of hemispheric lateralization. The collective psychophysical and electrophysiological results support the hypothesis that IID and ITD cues are processed by distinct, but interacting, cortical networks that can in turn facilitate auditory localization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A first episode of depression after 65 years of age has long been associated with both severe macrovascular and small microvascular pathology. Among the three more frequent forms of depression in old age, post-stroke depression has been associated with an abrupt damage of cortical circuits involved in monoamine production and mood regulation. Late-onset depression (LOD) in the absence of stroke has been related to lacunes and white matter lesions that invade both the neocortex and subcortical nuclei. Recurrent late-life depression is thought to induce neuronal loss in the hippocampal formation and white matter lesions that affect limbic pathways. Despite an impressive number of magnetic resonance imaging (MRI) studies in this field, the presence of a causal relationship between structural changes in the human brain and LOD is still controversial. The present article provides a critical overview of the contribution of neuropathology in post-stroke, late-onset, and late-life recurrent depression. Recent autopsy findings challenge the role of stroke location in the occurrence of post-stroke depression by pointing to the deleterious effect of subcortical lacunes. Despite the lines of evidences supporting the association between MRI-assessed white matter changes and mood dysregulation, lacunes, periventricular and deep white matter demyelination are all unrelated to the occurrence of LOD. In the same line, neuropathological data show that early-onset depression is not associated with an acceleration of aging-related neurodegenerative changes in the human brain. However, they also provide data in favor of the neurotoxic theory of depression by showing that neuronal loss occurs in the hippocampus of chronically depressed patients. These three paradigms are discussed in the light of the complex relationships between psychosocial determinants and biological vulnerability in affective disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dose-dependent toxicity of the main psychoactive component of cannabis in brain regions rich in cannabinoid CB1 receptors is well known in animal studies. However, research in humans does not show common findings across studies regarding the brain regions that are affected after long-term exposure to cannabis. In the present study, we investigate (using Voxel-based Morphometry) gray matter changes in a group of regular cannabis smokers in comparison with a group of occasional smokers matched by the years of cannabis use. We provide evidence that regular cannabis use is associated with gray matter volume reduction in the medial temporal cortex, temporal pole, parahippocampal gyrus, insula, and orbitofrontal cortex; these regions are rich in cannabinoid CB1 receptors and functionally associated with motivational, emotional, and affective processing. Furthermore, these changes correlate with the frequency of cannabis use in the 3 months before inclusion in the study. The age of onset of drug use also influences the magnitude of these changes. Significant gray matter volume reduction could result either from heavy consumption unrelated to the age of onset or instead from recreational cannabis use initiated at an adolescent age. In contrast, the larger gray matter volume detected in the cerebellum of regular smokers without any correlation with the monthly consumption of cannabis may be related to developmental (ontogenic) processes that occur in adolescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the dynamics of lexical-semantic and lexical-phonological encoding in word production have been investigated in several event-related potential (ERP) studies, the estimated time course of phonological-phonetic encoding is the result of rather indirect evidence. We investigated the dynamics of phonological-phonetic encoding combining ERP analyses covering the entire encoding process in picture naming and word reading tasks by comparing ERP modulations in eight brain-damaged speakers presenting impaired phonological-phonetic encoding relative to 16 healthy controls. ERPs diverged between groups in terms of local waveform amplitude and global topography at ∼400ms after stimulus onset in the picture naming task and at ∼320-350ms in word reading and sustained until 100ms before articulation onset. These divergences appeared in later time windows than those found in patients with underlying lexical-semantic and lexical-phonological impairment in previous studies, providing evidence that phonological-phonetic encoding is engaged around 400ms in picture naming and around 330ms in word reading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : This thesis investigated the spatio-temporal brain mechanisms of three processes involved in recognizing environmental sounds produced by living (animal vocalisations) and man-made (manufactured) objects: their discrimination, their plasticity, and the involvement of action representations. Results showed rapid brain discrimination between these categories beginning at ~70ms. Then, beginning at ~150ms, effects of plasticity are observed, without any influence of the categories of sounds. Both of these processes of discrimination and repetition priming involved brain structures located in temporal and frontal lobes. Activation of brain areas BA21 and BA22 suggest an access to semantic representations and/or linked to object manipulation. To investigate the involvement of action representations in sound recognition, analyses were restricted to sounds produced by man-made objects. Results suggest an access to representations linked to action functionally related to sound rather than to representations linked to action that produced sound. These effects occurred at ~300ms post-stimulus onset and involved differential activity brain regions attributed to the mirror neuron system. These data are discussed in regard to motor preparation of actions functionally linked to sounds. Collectively these data showed a sequential progression of cerebral activity underlying the recognizing of environmental sounds. The processes occurred firstly in a shared network of brain areas before propagating elsewhere and/or leading to differential activity in these structures. Cerebral responses observed in this work allowed establishing a dynamic model of discrimination of sounds produced by living and man-made objects.