167 resultados para AIRWAY MUCUS
Resumo:
Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 μM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 μM amiloride and that recombinant αβγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 μM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the β(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.
Resumo:
The health status of previously premature neonates after closure of a patent ductus arteriosus (PDA) was analyzed in childhood and adolescence. Physician questionnaires were used to study 180 hospital survivors among 210 consecutive premature neonates who underwent PDA closure between 1985 and 2005. Complete follow-up data were obtained for 129 patients (72%). During a median follow-up period of 7 years (range, 2-22 years), three late deaths (2.3%) had occurred. Only 45% of the patients were considered healthy. Morbidity included developmental delay (41.1%), pulmonary illness (12.4%), neurologic impairment (14.7%), hearing impairment (3.9%), gastrointestinal disease (3.1%), and thoracic deformity (1.2%). None of the adverse variables during the neonatal period (intraventricular hemorrhage, bradycardia apnea syndrome, bronchopulmonary dysplasia, pulmonary bleeding, hyaline membrane disease, artificial respiration time [continuous positive airway pressure + intubation], or necrotizing enterocolitis) statistically predicted respective system morbidity at the follow-up evaluation. Hyaline membrane disease (odds ratio, 2.5; p = 0.026) and longer hospitalization time (odds ratio, 1.2 days per 10 hospitalization days; p = 0.032) in the newborn period were significant predictors of an unhealthy outcome at the last follow-up evaluation. Survival until childhood after closure of a hemodynamically significant PDA in premature neonates is satisfactory. However, physical and neurodevelopmental co-morbidity persist for half of the patients, perhaps as a sequela of prematurity unrelated to ductus closure.
Resumo:
Acute organophosphate (OP) intoxication is associated with many symptoms and clinical signs, including potentially life-threatening seizures and status epilepticus. Instead of being linked to the direct cholinergic toxidrome, OP-related seizures are more probably linked to the interaction of OPs with acetylcholineindependent neuromodulation pathways, such as GABA and NMDA. The importance of preventing, or recognizing and treating OP-related seizures lies in that, the central nervous system (CNS) damage from OP poisoning is thought to be due to the excitotoxicity of the seizure activity itself rather than a direct toxic effect. Muscular weakness and paralysis occurring 1-4 days after the resolution of an acute cholinergic toxidrome, the intermediate syndrome is usually not diagnosed until significant respiratory insufficiency has occurred; it is nevertheless a major cause of OP-induced morbidity and mortality and requires aggressive supportive treatment. The condition usually resolves spontaneously in 1-2 weeks.Treatment of OP intoxication relies on prompt diagnosis, and specific and immediate treatment of the lifethreatening symptoms. Since patients suffering from OP poisoning can secondarily expose care providers via contaminated skin, clothing, hair, or body fluids. EMS and hospital caregivers should be prepared to protect themselves with appropriate protective equipment, isolate such patients, and decontaminate them. After prompt decontamination, the initial priority of patient management is an immediate ABCDE (A : airway, B : breathing, C : circulation, D : dysfunction or disability of the central nervous system, and E : exposure) resuscitation approach, including aggressive respiratory support, since respiratory failure is the usual ultimate cause of death. The subsequent priority is initiating atropine therapy to oppose the muscarinic symptoms and diazepam to prevent or control seizures, with oximes added to enhance acetylcholinesterase (AChE) activity recovery. Large doses of atropine and oximes may be necessary for poisoning due to suicidal ingestions of OP pesticides.
Resumo:
Inhaled therapies play a significant role in the management of cystic fibrosis patients. Mucolytic and airway-rehydrating agents improve mucociliary clearance and respiratory functional status. Nebulized antibiotherapy achieve high local concentration, while reducing systemic toxicity. Tolerance to inhaled treatments is good excepting frequent bronchoconstriction which can usually be prevented by prior administration of beta2-mimetics. The majority of treatments are only available in liquid formulations. Thus, nebulization is the most frequently used inhalation mode. Vibrating-mesh nebulizers have significantly reduced inhalation time.
Resumo:
Objectives The objective of this article is to describe the development of an anatomically accurate simulator in order to aid the training of a perinatal team in the insertion and removal of a fetal endoscopic tracheal occlusion (FETO) balloon in the management of prenatally diagnosed congenital diaphragmatic hernia. Methods An experienced perinatal team collaborated with a medical sculptor to design a fetal model for the FETO procedure. Measurements derived from 28-week fetal magnetic resonance imaging were used in the development of an anatomically precise simulated airway within a silicone rubber preterm fetal model. Clinician feedback was then used to guide multiple iterations of the model with serial improvements in the anatomic accuracy of the simulator airway. Results An appropriately sized preterm fetal mannequin with a high-fidelity airway was developed. The team used this model to develop surgical skills with balloon insertion, and removal, and to prepare the team for an integrated response to unanticipated delivery with the FETO balloon still in situ. Conclusions This fetal mannequin aided in the ability of a fetal therapy unit to offer the FETO procedure at their center for the first time. This model may be of benefit to other perinatal centers planning to offer this procedure.
Resumo:
INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) [1] is a new spontaneousassisted ventilatory mode which uses the diaphragmatic electrical activity (Eadi) to pilot the ventilator. Eadi is used to initiate the ventilator's pressurization and cycling off. Delivered inspiratory assistance is proportional to Eadi. NAVA can improve patient-ventilator synchrony [2] compared to pressure support (PS), but little is known about its effect on minute ventilation and oxygenation. OBJECTIVES. To compare the effects of NAVA and PS on minute ventilation and oxygenation and to analyze potential determinant factors for oxygenation. METHODS. Comparison between two 20-min periods under NAVA and PS. NAVA gain (proportionality factor between Eadi and delivered pressure) set as to obtain the same peak pressure as in PS. FIO2 and positive end-expiratory pressure (PEEP) were the same in NAVA and PS. Blood gas analyses were performed at the end of both recording periods. Statistical analysis: groups were compared with paired t tests or non parametric Wilcoxon signed-rank tests. p\0.05 was considered significant. RESULTS. [Mean ± SD]: 22 patients (age 66 ± 12 year, 7 M/15F, BMI 23.4 ± 3.1 kg/m2), 8 patients with COPD. Initial settings: PS 13 ± 3 cmH2O, PEEP 7 ± 2 cmH2O, NAVA gain 2.2 ± 1.8. Minute ventilation and PaCO2 were the same with both modes (p = 0.296 and 0.848, respectively). Tidal volume was lower with NAVA (427 ± 102 vs. 477 ± 102 ml, p\0.001). In contrast respiratory rate was higher with NAVA (25.6 ± 9.5 vs. 22.3 ± 8.9 cycles/min). Arterial oxygenation was improved with NAVA (PaO2 85.1 ± 28.9 vs. 75.8 ± 11.9 mmHg, p = 0.017, PaO2/FIO2 210 ± 53 vs. 195 ± 58 mmHg, p = 0.019). Neural inspiratory time (Tin) was comparable between NAVA and PS (p = 0.566). Among potential determinant factors for oxygenation, mean airway pressure (Pmean) was lower with NAVA (10.6 ± 2.6 vs. 11.1 ± 2.4 cmH2O, p = 0.006), as was the pressure time product (PTP) (6.8 ± 3.0 vs. 9.2 ± 3.5 cmH2O 9 s, p = 0.004). There were less asynchrony events with NAVA (2.3 ± 2.0 vs. 4.4 ± 3.8, p = 0.009).Tidal volume variability was higher with NAVA (variation coefficient: 30 ± 19.5 vs. 13.5 ± 8.6, p\0.001). Inspiratory time in excess (Tiex) was lower with NAVA (56 ± 23 vs. 202 ± 200 ms, p = 0.001). CONCLUSION. Despite lower Pmean and PTP in NAVA, arterial oxygenation was improved compared to PS. As asynchronies may be associated with an increased work of breathing and a higher oxygen consumption, their decrease in number with NAVA could be an explanation for oxygenation improvement. Another explanation could be the increase in VT variability. Further studies should now be performed to confirm the potential of NAVA in improving arterial oxygenation and explore the underlying mechanisms.
Resumo:
Epidemiological data point toward a critical period in early life during which environmental cues can set an individual on a trajectory toward respiratory health or disease. The neonatal immune system matures during this period, although little is known about the signals that lead to its maturation. Here we report that the formation of the lung microbiota is a key parameter in this process. Immediately following birth, neonatal mice were prone to develop exaggerated airway eosinophilia, release type 2 helper T cell cytokines and exhibit airway hyper-responsiveness following exposure to house dust mite allergens, even though their lungs harbored high numbers of natural CD4(+)Foxp3(+)CD25(+)Helios(+) regulatory T (Treg) cells. During the first 2 weeks after birth, the bacterial load in the lungs increased, and representation of the bacterial phyla shifts from a predominance of Gammaproteobacteria and Firmicutes towards Bacteroidetes. The changes in the microbiota were associated with decreased aeroallergen responsiveness and the emergence of a Helios(-) Treg cell subset that required interaction with programmed death ligand 1 (PD-L1) for development. Absence of microbial colonization(10) or blockade of PD-L1 during the first 2 weeks postpartum maintained exaggerated responsiveness to allergens through to adulthood. Adoptive transfer of Treg cells from adult mice to neonates before aeroallergen exposure ameliorated disease. Thus, formation of the airway microbiota induces regulatory cells early in life, which, when dysregulated, can lead to sustained susceptibility to allergic airway inflammation in adulthood.
Resumo:
Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9-10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady? intestinal barrier model or the more permeable mucus-secreting CacoGoblet? model.
Resumo:
Bronchiolitis obliterans (BO) following allogeneic haematopoietic stem cell transplantation (HSCT) affects peripheral airways. Detection of BO is presently delayed by the low sensitivity of spirometry. We examined the relationship between peripheral airway function and time since HSCT, and compared it with spirometry and clinical indices in 33 clinically stable allogeneic HSCT recipients. The following measurements were performed: lung function, exhaled nitric oxide, forced oscillatory respiratory system resistance and reactance, acinar (S(acin)) and conductive airways ventilation heterogeneity and lung clearance index (LCI) measured by multiple breath nitrogen washout. 22 patients underwent repeat visits from which short-term changes were examined. Median time post HSCT was 12 months. Eight patients were clinically diagnosed as having BO. In multivariate analysis, time since HSCT was predicted by S(acin) and forced expiratory volume in 1 s % predicted. 20 patients had abnormal S(acin) with normal spirometry, whereas none had airflow obstruction with normal S(acin). S(acin) and LCI were the only measures to change significantly between two visits, with both worsening. Change in S(acin) was the only parameter to correlate with change in chronic graft-versus-host disease grade. In conclusion, peripheral airways ventilation heterogeneity worsens with time after HSCT. S(acin) may be more sensitive than spirometry in detecting BO at an early stage, which needs confirmation in a prospective study.
Resumo:
Biosynthesis of active endothelin-1 (ET-1) implies an enzymatic processing of the inactive precursor Big ET-1 (1-39) into the mature, 21 amino acid peptide. The aim of this study was to characterize in airway and alveolar epithelial cells the enzymes responsible for this activation. BEAS-2B and A549 cells, which both produce ET-1, were studied in vitro as models for bronchiolar and alveolar cells, respectively. Both cell lines were able to convert exogenously added Big ET-1 (0.1 microM) into ET-1, suggesting a cell surface or an extracellular processing. The conversion was inhibited by phosphoramidon in both cell lines with an IC50 approximately 1 microM, but not by thiorphan, a specific inhibitor of neutral endopeptidase 24.11 (NEP). The endogenous production of serum-stimulated BEAS-2B and A549 cells was not inhibited by thiorphan, and phosphoramidon showed inhibition only at high concentration (>100 microM). Western blotting following electrophoresis in reducing conditions demonstrated a protein of MR 110 corresponding to the ECE-1 monomer in both BEAS-2B and A549 cells, as well as in whole lung extracts. By RT-PCR we revealed the mRNA encoding for the ECE-1b and/or -1c subtype, but not ECE-1a, in both cell lines. We conclude that BEAS-2B and A549 cells are able to process either endogenous or exogenous Big ET-1 by ECE-1 and that isoforms 1b and 1c could be involved in this processing with no significant role of NEP.
Resumo:
There are many case reports of serious complications and death among obstructive sleep apnea patients (OSA) during general anesthesia or postoperative analgesia. Sedatives and anesthetic agents, pharyngeal anatomy of these patients, opiates given for analgesia, and post operative REM sleep rebound represent potential hazards for general anesthesia in OSA patients. Ideally these patients should be treated with continuous positive airway pressure (CPAP) during premedication, directly after extubation and during postoperative analgesia. Unfortunately, only about 20% of these patients are diagnosed before surgery. A special attention should be given to the symptoms and signs suggestive of OSA during preoperative visits. Screening tests should be performed in patients with suspected OSA and, if positive, a treatment should be initiated.
Resumo:
OBJECTIVE: To correlate the postoperative voice outcome to preoperative glottic involvement, following partial cricotracheal resection (PCTR) in children. The glottic involvement was analysed based on the extent of subglottic stenosis (SGS) in the endoscopic image and functional dynamic assessment using flexible endoscopy. METHODS: We conducted an interobserver study in which two ENT surgeons, blinded to one another's interpretation, independently rated the extent of SGS based on the endoscopic image along with the dynamic functional airway assessment, of 108 children who underwent PCTR for grade III or IV stenosis. Based on the observation, the glottic involvement was rated into 4 categories: Evaluation of the voice was based on a parent/patient proxy questionnaire sent in 2008 to assess the current functional status of the patient's voice. RESULTS: Among the 77 patients available for long-term outcome with a minimum 1-year follow-up, 31 patients had isolated SGS free from vocal cords (group A) and 30 had SGS reaching the under surface of vocal cords with partial or no impairment of abduction of vocal cords (group B). Twelve patients belonged to group C with posterior glottic stenosis and/or vocal cord fusion (without cricoarytenoid ankylosis) and 4 patients had transglottic stenosis and or/bilateral cricoarytenoid ankylosis (group D). The long-term voice outcome following PCTR as perceived by the parent or patient was normal in 18% (14 of 77 patients) and the remaining 63 patients demonstrated mild to severe dysphonia. Patients belonging to group A and B exhibited either normal voice or mild dysphonia. Patients in group C demonstrated dysphonia, which was moderate in severity in the majority (83%). All patients in group D with transglottic stenosis and/or CAA showed severe dysphonia. CONCLUSION: Children with associated glottic involvement are at high risk for poor voice outcome following PCTR. The severity of dysphonia was found to be proportional to the preoperative glottic involvement. Preoperative rating of the extent of glottic involvement based on endoscopic image and dynamic assessment was found to be useful in prognosticating the voice outcome.
Resumo:
Secretory immunoglobulin (Ig) A (SIgA) is essential in protecting mucosal surfaces. It is composed of at least two monomeric IgA molecules, covalently linked through the J chain, and secretory component (SC). We show here that a dimeric/polymeric IgA (IgA(d/p)) is more efficient when bound to SC in protecting mice against bacterial infection of the respiratory tract. We demonstrate that SC ensures, through its carbohydrate residues, the appropriate tissue localization of SIgA by anchoring the antibody to mucus lining the epithelial surface. This in turn impacts the localization and the subsequent clearance of bacteria. Thus, SC is directly involved in the SIgA function in vivo. Therefore, binding of IgA(d/p) to SC during the course of SIgA-mediated mucosal response constitutes a crucial step in achieving efficient protection of the epithelial barrier by immune exclusion.
Resumo:
Introduction: Bioaerosols such as grain dust, via biologically active agents, elicit local inflammation and direct immunological reactions within the human respiratory system. Workplace-dependent exposure to grain dust (GD) may thus induce asthma, chronic bronchitis, and hypersensitivity pneumonitis. The aim of this study is to assess the clinical impact of occupational exposure to GD and to determine quantitative biological markers of bioaerosol exposure in grain workers. Methods: This longitudinal study has been conducted from summer 2012, to summer 2013, comprising 6 groups of 30 active workers with different GD exposure patterns (4 groups of grain workers, 2 control groups). After obtaining informed consent, two evaluations at high- and low-exposing seasons take place, during which an occupational history and a detailed medical history are questionnaire-assessed, lung function is evaluated by spirometry, airway inflammation is measured by exhaled nitric oxide (eNO), and specific blood IgG and IgE are titrated. The preliminary results presented hereafter are those of two of the four exposed groups, namely harvesters and mill workers, compared to the control groups, at first assessment (n=100). Results: Mean age is 38.4 [years]; 98% are male. Exposed groups differ from controls (p<0.05) in daily contact with animals (57% vs. 40%) and active smoking (39% vs. 11%). Grain workers have more respiratory (50%), nasal (57%), ocular (45%), dermatologic (36%) and systemic (20%) occupational symptoms than controls (6.4%, 19%, 16%, 6.4%, 1.6% respectively, p<0.05). Lower mean peak-expiratory-flow (PEF) values (96.1 ± 18.9 vs. 108.2 ± 17.4 [% of predicted], p<0.05) and eNO values (13.9 ± 9.6 vs. 20.5 ± 14.7 [ppm], p<0.05) are observed in the exposed groups. Conclusion: Preliminary results show a higher prevalence of clinical symptoms and a lower mean PEF value in the exposed groups. Detailed supplementary analyses are pending.
Resumo:
Introduction: Difficult tracheal intubation remains a constant and significant source of morbidity and mortality in anaesthetic practice. Insufficient airway assessment in the preoperative period continues to be a major cause of unanticipated difficult intubation. Although many risk factors have already been identified, preoperative airway evaluation is not always regarded as a standard procedure and the respective weight of each risk factor remains unclear. Moreover the predictive scores available are not sensitive, moderately specific and often operator-dependant. In order to improve the preoperative detection of patients at risk for difficult intubation, we developed a system for automated and objective evaluation of morphologic criteria of the face and neck using video recordings and advanced techniques borrowed from face recognition. Method and results: Frontal video sequences were recorded in 5 healthy volunteers. During the video recording, subjects were requested to perform maximal flexion-extension of the neck and to open wide the mouth with tongue pulled out. A robust and real-time face tracking system was then applied, allowing to automatically identify and map a grid of 55 control points on the face, which were tracked during head motion. These points located important features of the face, such as the eyebrows, the nose, the contours of the eyes and mouth, and the external contours, including the chin. Moreover, based on this face tracking, the orientation of the head could also be estimated at each frame of the video sequence. Thus, we could infer for each frame the pitch angle of the head pose (related to the vertical rotation of the head) and obtain the degree of head extension. Morphological criteria used in the most frequent cited predictive scores were also extracted, such as mouth opening, degree of visibility of the uvula or thyreo-mental distance. Discussion and conclusion: Preliminary results suggest the high feasibility of the technique. The next step will be the application of the same automated and objective evaluation to patients who will undergo tracheal intubation. The difficulties related to intubation will be then correlated to the biometric characteristics of the patients. The objective in mind is to analyze the biometrics data with artificial intelligence algorithms to build a highly sensitive and specific predictive test.