148 resultados para 3D Computer Graphics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Ankle arthropathy is associated with a decreased motion of the ankle-hindfoot during ambulation. Ankle arthrodesis was shown to result in degeneration of the neighbour joints of the foot. Inversely, total ankle arthroplasty conceptually preserves the adjacent joints because of the residual mobility of the ankle but this has not been demonstrated yet in vivo. It has also been reported that degenerative ankle diseases, and even arthrodesis, do not result in alteration of the knee and hip joints. We present the preliminary results of a new approach of this problem based on ambulatory gait analysis. Patients and Methods: Motion analysis of the lower limbs was performed using a Physilog® (BioAGM, CH) system consisting of three-dimensional (3D) accelerometer and gyroscope, coupled to a magnetic system (Liberty©, Polhemus, USA). Both systems have been validated. Three groups of two patients were included into this pilot study and compared to healthy subjects (controls) during level walking: patients with ankle osteoarthritis (group 1), patients treated by ankle arthrodesis (group 2), patients treated by total ankle prosthesis (group 3). Results: Motion patterns of all analyzed joints over more than 20 gait cycles in each subject were highly repeatable. Motion amplitude of the ankle-hindfoot in control patients was similar to recently reported results. Ankle arthrodesis limited the motion of the ankle-hindfoot in the sagittal and horizontal planes. The prosthetic ankle allowed a more physiologic movement in the sagittal plane only. Ankle arthritis and its treatments did not influence the range of motion of the knee and hip joint during stance phase, excepted for a slight decrease of the hip flexion in groups 1 and 2. Conclusion: The reliability of the system was shown by the repeatability of the consecutive measurements. The results of this preliminary study were similar to those obtained through laboratory gait analysis. However, our system has the advantage to allow ambulatory analysis of 3D kinematics of the lower limbs outside of a gait laboratory and in real life conditions. To our knowledge this is a new concept in the analysis of ankle arthropathy and its treatments. Therefore, there is a potential to address specific questions like the difficult comparison of the benefits of ankle arthroplasty versus arthrodesis. The encouraging results of this pilot study offer the perspective to analyze the consequences of ankle arthropathy and its treatments on the biomechanics of the lower limbs ambulatory, in vivo and in daily life conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malposition of the acetabular component during hip arthroplasty increases the occurrence of impingement, reduces range of motion, and increases the risk of dislocation and long-term wear. To prevent malpositioned hip implants, an increasing number of computer-assisted orthopaedic systems have been described, but their accuracy is not well established. The purpose of this study was to determine the reproducibility and accuracy of conventional versus computer-assisted techniques for positioning the acetabular component in total hip arthroplasty. Using a lateral approach, 150 cups were placed by 10 surgeons in 10 identical plastic pelvis models (freehand, with a mechanical guide, using computer assistance). Conditions for cup implantations were made to mimic the operating room situation. Preoperative planning was done from a computed tomography scan. The accuracy of cup abduction and anteversion was assessed with an electromagnetic system. Freehand placement revealed a mean accuracy of cup anteversion and abduction of 10 degrees and 3.5 degrees, respectively (maximum error, 35 degrees). With the cup positioner, these angles measured 8 degrees and 4 degrees (maximum error, 29.8 degrees), respectively, and using computer assistance, 1.5 degrees and 2.5 degrees degrees (maximum error, 8 degrees), respectively. Computer-assisted cup placement was an accurate and reproducible technique for total hip arthroplasty. It was more accurate than traditional methods of cup positioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trans-apical aortic valve replacement (AVR) is a new and rapidly growing therapy. However, there are only few training opportunities. The objective of our work is to build an appropriate artificial model of the heart that can replace the use of animals for surgical training in trans-apical AVR procedures. To reduce the necessity for fluoroscopy, we pursued the goal of building a translucent model of the heart that has nature-like dimensions. A simplified 3D model of a human heart with its aortic root was created in silico using the SolidWorks Computer-Aided Design (CAD) program. This heart model was printed using a rapid prototyping system developed by the Fab@Home project and dip-coated two times with dispersion silicone. The translucency of the heart model allows the perception of the deployment area of the valved-stent without using heavy imaging support. The final model was then placed in a human manikin for surgical training on trans-apical AVR procedure. Trans-apical AVR with all the necessary steps (puncture, wiring, catheterization, ballooning etc.) can be realized repeatedly in this setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray is a technology that is used for numerous applications in the medical field. The process of X-ray projection gives a 2-dimension (2D) grey-level texture from a 3- dimension (3D) object. Until now no clear demonstration or correlation has positioned the 2D texture analysis as a valid indirect evaluation of the 3D microarchitecture. TBS is a new texture parameter based on the measure of the experimental variogram. TBS evaluates the variation between 2D image grey-levels. The aim of this study was to evaluate existing correlations between 3D bone microarchitecture parameters - evaluated from μCT reconstructions - and the TBS value, calculated on 2D projected images. 30 dried human cadaveric vertebrae were acquired on a micro-scanner (eXplorer Locus, GE) at isotropic resolution of 93 μm. 3D vertebral body models were used. The following 3D microarchitecture parameters were used: Bone volume fraction (BV/TV), Trabecular thickness (TbTh), trabecular space (TbSp), trabecular number (TbN) and connectivity density (ConnD). 3D/2D projections has been done by taking into account the Beer-Lambert Law at X-ray energy of 50, 100, 150 KeV. TBS was assessed on 2D projected images. Correlations between TBS and the 3D microarchitecture parameters were evaluated using a linear regression analysis. Paired T-test is used to assess the X-ray energy effects on TBS. Multiple linear regressions (backward) were used to evaluate relationships between TBS and 3D microarchitecture parameters using a bootstrap process. BV/TV of the sample ranged from 18.5 to 37.6% with an average value at 28.8%. Correlations' analysis showedthat TBSwere strongly correlatedwith ConnD(0.856≤r≤0.862; p<0.001),with TbN (0.805≤r≤0.810; p<0.001) and negatively with TbSp (−0.714≤r≤−0.726; p<0.001), regardless X-ray energy. Results show that lower TBS values are related to "degraded" microarchitecture, with low ConnD, low TbN and a high TbSp. The opposite is also true. X-ray energy has no effect onTBS neither on the correlations betweenTBS and the 3Dmicroarchitecture parameters. In this study, we demonstrated that TBS was significantly correlated with 3D microarchitecture parameters ConnD and TbN, and negatively with TbSp, no matter what X-ray energy has been used. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: None declared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods are presented to map complex fiber architectures in tissues by imaging the 3D spectra of tissue water diffusion with MR. First, theoretical considerations show why and under what conditions diffusion contrast is positive. Using this result, spin displacement spectra that are conventionally phase-encoded can be accurately reconstructed by a Fourier transform of the measured signal's modulus. Second, studies of in vitro and in vivo samples demonstrate correspondence between the orientational maxima of the diffusion spectrum and those of the fiber orientation density at each location. In specimens with complex muscular tissue, such as the tongue, diffusion spectrum images show characteristic local heterogeneities of fiber architectures, including angular dispersion and intersection. Cerebral diffusion spectra acquired in normal human subjects resolve known white matter tracts and tract intersections. Finally, the relation between the presented model-free imaging technique and other available diffusion MRI schemes is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positron emission tomography is a functional imaging technique that allows the detection of the regional metabolic rate, and is often coupled with other morphological imaging technique such as computed tomography. The rationale for its use is based on the clearly demonstrated fact that functional changes in tumor processes happen before morphological changes. Its introduction to the clinical practice added a new dimension in conventional imaging techniques. This review presents the current and proposed indications of the use of positron emission/computed tomography for prostate, bladder and testes, and the potential role of this exam in radiotherapy planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Excessive exposure to solar Ultra-Violet (UV) light is the main cause of most skin cancers in humans. Factors such as the increase of solar irradiation at ground level (anthropic pollution), the rise in standard of living (vacation in sunny areas), and (mostly) the development of outdoor activities have contributed to increase exposure. Thus, unsurprisingly, incidence of skin cancers has increased over the last decades more than that of any other cancer. Melanoma is the most lethal cutaneous cancer, while cutaneous carcinomas are the most common cancer type worldwide. UV exposure depends on environmental as well as individual factors related to activity. The influence of individual factors on exposure among building workers was investigated in a previous study. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure. A high variance of short-term exposure was observed between different body locations, indicating the occurrence of intense, subacute exposures. It was also found that effective short-term exposure ranged between 0 and 200% of ambient irradiation, suggesting that ambient irradiation is a poor predictor of effective exposure. Various dosimetric techniques enable to assess individual effective exposure, but dosimetric measurements remain tedious and tend to be situation-specific. As a matter of facts, individual factors (exposure time, body posture and orientation in the sun) often limit the extrapolation of exposure results to similar activities conducted in other conditions. Objective: The research presented in this paper aims at developing and validating a predictive tool of effective individual exposure to solar UV. Methods: Existing computer graphic techniques (3D rendering) were adapted to reflect solar exposure conditions and calculate short-term anatomical doses. A numerical model, represented as a 3D triangular mesh, is used to represent the exposed body. The amount of solar energy received by each "triangle is calculated, taking into account irradiation intensity, incidence angle and possible shadowing from other body parts. The model take into account the three components of the solar irradiation (direct, diffuse and albedo) as well as the orientation and posture of the body. Field measurements were carried out using a forensic mannequin at the Payerne MeteoSwiss station. Short-term dosimetric measurements were performed in 7 anatomical locations for 5 body postures. Field results were compared to the model prediction obtained from the numerical model. Results: The best match between prediction and measurements was obtained for upper body parts such as shoulders (Ratio Modelled/Measured; Mean = 1.21, SD = 0.34) and neck (Mean = 0.81, SD = 0.32). Small curved body parts such as forehead (Mean = 6.48, SD = 9.61) exhibited a lower matching. The prediction is less accurate for complex postures such as kneeling (Mean = 4.13, SD = 8.38) compared to standing up (Mean = 0.85, SD = 0.48). The values obtained from the dosimeters and the ones computed from the model are globally consistent. Conclusion: Although further development and validation are required, these results suggest that effective exposure could be predicted for a given activity (work or leisure) in various ambient irradiation conditions. Using a generic modelling approach is of high interest in terms of implementation costs as well as predictive and retrospective capabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of three-dimensional (3D) knee joint angle outside a laboratory is of benefit in clinical examination and therapeutic treatment comparison. Although several motion capture devices exist, there is a need for an ambulatory system that could be used in routine practice. Up-to-date, inertial measurement units (IMUs) have proven to be suitable for unconstrained measurement of knee joint differential orientation. Nevertheless, this differential orientation should be converted into three reliable and clinically interpretable angles. Thus, the aim of this study was to propose a new calibration procedure adapted for the joint coordinate system (JCS), which required only IMUs data. The repeatability of the calibration procedure, as well as the errors in the measurement of 3D knee angle during gait in comparison to a reference system were assessed on eight healthy subjects. The new procedure relying on active and passive movements reported a high repeatability of the mean values (offset<1 degrees) and angular patterns (SD<0.3 degrees and CMC>0.9). In comparison to the reference system, this functional procedure showed high precision (SD<2 degrees and CC>0.75) and moderate accuracy (between 4.0 degrees and 8.1 degrees) for the three knee angle. The combination of the inertial-based system with the functional calibration procedure proposed here resulted in a promising tool for the measurement of 3D knee joint angle. Moreover, this method could be adapted to measure other complex joint, such as ankle or elbow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient high-resolution (HR) three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings was developed. In Lake Geneva, near the city of Lausanne, Switzerland, the offshore extension of a complex fault zone well mapped on land was chosen for testing our system. A preliminary two-dimensional seismic survey indicated structures that include a thin (<40 m) layer of subhorizontal Quaternary sediments that unconformably overlie south-east-dipping Tertiary Molasse beds and a major fault zone (Paudeze Fault Zone) that separates Plateau and Subalpine Molasse (SM) units. A 3D survey was conducted over this test site using a newly developed three-streamer system. It provided high-quality data with a penetration to depths of 300 m below the water bottom of non-aliased signal for dips up to 30degrees and with a maximum vertical resolution of 1.1 m. The data were subjected to a conventional 3D processing sequence that included post-stack time migration. Tests with 3D pre-stack depth migration showed that such techniques can be applied to HR seismic surveys. Delineation of several horizons and fault surfaces reveals the potential for small-scale geologic and tectonic interpretation in three dimensions. Five major seismic facies and their detailed 3D geometries can be distinguished. Three fault surfaces and the top of a molasse surface were mapped in 3D. Analysis of the geometry of these surfaces and their relative orientation suggests that pre-existing structures within the Plateau Molasse (PM) unit influenced later faulting between the Plateau and SM. In particular, a change in strike of the PM bed dip may indicate a fold formed by a regional stress regime, the orientation of which was different from the one responsible for the creation of the Paudeze Fault Zone. This structure might have later influenced the local stress regime and caused the curved shape of the Paudeze Fault in our surveyed area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Like numerous torrents in mountainous regions, the Illgraben creek (canton of Wallis, SW Switzerland) produces almost every year several debris flows. The total area of the active catchment is only 4.7 km², but large events ranging from 50'000 to 400'000 m³ are common (Zimmermann 2000). Consequently, the pathway of the main channel often changes suddenly. One single event can for instance fill the whole river bed and dig new several-meters-deep channels somewhere else (Bardou et al. 2003). The quantification of both, the rhythm and the magnitude of these changes, is very important to assess the variability of the bed's cross section and long profile. These parameters are indispensable for numerical modelling, as they should be considered as initial conditions. To monitor the channel evolution an Optech ILRIS 3D terrestrial laser scanner (LIDAR) was used. LIDAR permits to make a complete high precision 3D model of the channel and its surroundings by scanning it from different view points. The 3D data are treated and interpreted with the software Polyworks from Innovmetric Software Inc. Sequential 3D models allow for the determination of the variation in the bed's cross section and long profile. These data will afterwards be used to quantify the erosion and the deposition in the torrent reaches. To complete the chronological evolution of the landforms, precise digital terrain models, obtained by high resolution photogrammetry based on old aerial photographs, will be used. A 500 m long section of the Illgraben channel was scanned on 18th of August 2005 and on 7th of April 2006. These two data sets permit identifying the changes of the channel that occurred during the winter season. An upcoming scanning campaign in September 2006 will allow for the determination of the changes during this summer. Preliminary results show huge variations in the pathway of the Illgraben channel, as well as important vertical and lateral erosion of the river bed. Here we present the results of a river bank on the left (north-western) flank of the channel (Figure 1). For the August 2005 model the scans from 3 viewpoints were superposed, whereas the April 2006 3D image was obtained by combining 5 separate scans. The bank was eroded. The bank got eroded essentially on its left part (up to 6.3 m), where it is hit by the river and the debris flows (Figures 2 and 3). A debris cone has also formed (Figure 3), which suggests that a part of the bank erosion is due to shallow landslides. They probably occur when the river erosion creates an undercut slope. These geometrical data allow for the monitoring of the alluvial dynamics (i.e. aggradation and degradation) on different time scales and the influence of debris flows occurrence on these changes. Finally, the resistance against erosion of the bed's cross section and long profile will be analysed to assess the variability of these two key parameters. This information may then be used in debris flow simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of model observers for mimicking human detection strategies has followed from symmetric signals in simple noise to increasingly complex backgrounds. In this study we implement different model observers for the complex task of detecting a signal in a 3D image stack. The backgrounds come from real breast tomosynthesis acquisitions and the signals were simulated and reconstructed within the volume. Two different tasks relevant to the early detection of breast cancer were considered: detecting an 8 mm mass and detecting a cluster of microcalcifications. The model observers were calculated using a channelized Hotelling observer (CHO) with dense difference-of-Gaussian channels, and a modified (Partial prewhitening [PPW]) observer which was adapted to realistic signals which are not circularly symmetric. The sustained temporal sensitivity function was used to filter the images before applying the spatial templates. For a frame rate of five frames per second, the only CHO that we calculated performed worse than the humans in a 4-AFC experiment. The other observers were variations of PPW and outperformed human observers in every single case. This initial frame rate was a rather low speed and the temporal filtering did not affect the results compared to a data set with no human temporal effects taken into account. We subsequently investigated two higher speeds at 5, 15 and 30 frames per second. We observed that for large masses, the two types of model observers investigated outperformed the human observers and would be suitable with the appropriate addition of internal noise. However, for microcalcifications both only the PPW observer consistently outperformed the humans. The study demonstrated the possibility of using a model observer which takes into account the temporal effects of scrolling through an image stack while being able to effectively detect a range of mass sizes and distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. RESULTS: We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the tracked structures can be established, one representing the migration with respect to their relative position, the other representing their individual trajectories inside the cell. This software package, called "RodCellJ", allowed us to analyze a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry. CONCLUSIONS: "RodCell" is freely available to the community as a package of several ImageJ plugins to simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of different image-processing techniques in a single package, as well as the development of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where fluorescent-protein labeled structures need to be analyzed in rod-shaped cells. AVAILABILITY: RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html, (after acceptance of the publication).