121 resultados para 3-DIMENSIONAL ULTRASOUND
Resumo:
Five years of experience with endovascular infrarenal aneurysm repair at our institution is reviewed. Implantation of endoprostheses in 88 patients has been performed by surgeons using exclusively intravascular ultrasound (IVUS) and fluoroscopy. IVUS identified the target site of deployment in all cases. In-hospital morbidity was 22% (19/88). Two percent mortality (2/88) and 5% early conversion (4/88) as a consequence of type I endoleaks were noted only in the first 53 patients with early devices (NS). Early endoleaks were present in 36% (32/88) including twenty-two type I, five type II and five type III endoleaks. Proximal endoleaks were associated with early devices (P<0.001), and technical difficulties with deployment. Tube grafts used in the beginning, performed poorly with 54% (7/13) type I endoleaks. Endoleaks diminished to 10% (9/88) by spontaneous closure and secondary endovascular procedures that were necessary in 24% (21/88) and consisted of coil embolization/cuff extension (9), late conversion (6), and limb recanalization or femoral cross-over bypass (6). Endovascular aneurysm repair using IVUS is a valid alternative technique. Improved devices and systematic use of bifurcated endoprostheses for infrarenal aneurysms reduce the occurrence of type I endoleaks.
Resumo:
This nested case-control analysis of a Swiss ambulatory cohort of elderly women assessed the discriminatory power of urinary markers of bone resorption and heel quantitative ultrasound for non-vertebral fractures. The tests all discriminated between cases and controls, but combining the two strategies yielded no additional relevant information. INTRODUCTION: Data are limited regarding the combination of bone resorption markers and heel quantitative bone ultrasound (QUS) in the detection of women at risk for fracture. METHODS: In a nested case-control analysis, we studied 368 women (mean age 76.2 +/- 3.2 years), 195 with low-trauma non-vertebral fractures and 173 without, matched for age, BMI, medical center, and follow-up duration, from a prospective study designed to predict fractures. Urinary total pyridinolines (PYD) and deoxypyridinolines (DPD) were measured by high performance liquid chromatography. All women underwent bone evaluations using Achilles+ and Sahara heel QUS. RESULTS: Areas under the receiver operating-characteristic curve (AUC) for discriminative models of the fracture group, with 95% confidence intervals, were 0.62 (0.56-0.68) and 0.59 (0.53-0.65) for PYD and DPD, and 0.64 (0.58-0.69) and 0.65 (0.59-0.71) for Achilles+ and Sahara QUS, respectively. The combination of resorption markers and QUS added no significant discriminatory information to either measurement alone with an AUC of 0.66 (0.60-0.71) for Achilles+ with PYD and 0.68 (0.62-0.73) for Sahara with PYD. CONCLUSIONS: Urinary bone resorption markers and QUS are equally discriminatory between non-vertebral fracture patients and controls. However, the combination of bone resorption markers and QUS is not better than either test used alone.
Resumo:
The determination of line crossing sequences between rollerball pens and laser printers presents difficulties that may not be overcome using traditional techniques. This research aimed to study the potential of digital microscopy and 3-D laser profilometry to determine line crossing sequences between a toner and an aqueous ink line. Different paper types, rollerball pens, and writing pressure were tested. Correct opinions of the sequence were given for all case scenarios, using both techniques. When the toner was printed before the ink, a light reflection was observed in all crossing specimens, while this was never observed in the other sequence types. The 3-D laser profilometry, more time-consuming, presented the main advantage of providing quantitative results. The findings confirm the potential of the 3-D laser profilometry and demonstrate the efficiency of digital microscopy as a new technique for determining the sequence of line crossings involving rollerball pen ink and toner. With the mass marketing of laser printers and the popularity of rollerball pens, the determination of line crossing sequences between such instruments is encountered by forensic document examiners. This type of crossing presents difficulties with optical microscopic line crossing techniques involving ballpoint pens or gel pens and toner (1-4). Indeed, the rollerball's aqueous ink penetrates through the toner and is absorbed by the fibers of the paper, leaving the examiner with the impression that the toner is above the ink even when it is not (5). Novotny and Westwood (3) investigated the possibility of determining aqueous ink and toner crossing sequences by microscopic observation of the intersection before and after toner removal. A major disadvantage of their study resides in destruction of the sample by scraping off the toner line to see what was underneath. The aim of this research was to investigate the ways to overcome these difficulties through digital microscopy and three-dimensional (3-D) laser profilometry. The former was used as a technique for the determination of sequences between gel pen and toner printing strokes, but provided less conclusive results than that of an optical stereomicroscope (4). 3-D laser profilometry, which allows one to observe and measure the topography of a surface, has been the subject of a number of recent studies in this area. Berx and De Kinder (6) and Schirripa Spagnolo (7,8) have tested the application of laser profilometry to determine the sequence of intersections of several lines. The results obtained in these studies overcome disadvantages of other methods applied in this area, such as scanning electron microscope or the atomic force microscope. The main advantages of 3-D laser profilometry include the ease of implementation of the technique and its nondestructive nature, which does not require sample preparation (8-10). Moreover, the technique is reproducible and presents a high degree of freedom in the vertical axes (up to 1000 μm). However, when the paper surface presents a given roughness, if the pen impressions alter the paper with a depth similar to the roughness of medium, the results are not always conclusive (8). It becomes difficult in this case to distinguish which characteristics can be imputed to the pen impressions or the quality of the paper surface. This important limitation is assessed by testing different types of paper of variable quality (of different grammage and finishing) and the writing pressure. The authors will therefore assess the limits of 3-D laser profilometry technique and determine whether the method can overcome such constraints. Second, the authors will investigate the use of digital microscopy because it presents a number of advantages: it is efficient, user-friendly, and provides an objective evaluation and interpretation.
Resumo:
Microtubule-associated protein 1B, MAP1B, is a major cytoskeletal protein during brain development and one of the largest brain MAPs associated with microtubules and microfilaments. Here, we identified several proteins that bind to MAP1B via immunoprecipitation with a MAP1B-specific antibody, by one and two-dimensional gel electrophoresis and subsequent mass spectrometry identification of precipitated proteins. In addition to tubulin and actin, a variety of proteins were identified. Among these proteins were glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat shock protein 8, dihydropyrimidinase related proteins 2 and 3, protein-L-isoaspartate O-methyltransferase, beta-spectrin, and clathrin protein MKIAA0034, linking either directly or indirectly to MAP1B. In particular, GAPDH, a key glycolytic enzyme, was bound in large quantity to the heavy chain of MAP1B in adult brain tissue. In vitro binding studies confirmed a direct binding of GAPDH to MAP1B. In PC12 cells, GAPDH was found in cytoplasm and nuclei and partially co-localized with MAP1B. It disappeared from the cytoplasm under oxidative stress or after a disruption of cytoskeletal elements after colcemid or cytochalasin exposure. GAPDH may be essential in the local energy provision of cytoskeletal structures and MAP1B may help to keep this key enzyme close to the cytoskeleton.
Resumo:
PURPOSE: Atherosclerosis results in a considerable medical and socioeconomic impact on society. We sought to evaluate novel magnetic resonance imaging (MRI) angiography and vessel wall sequences to visualize and quantify different morphologic stages of atherosclerosis in a Watanabe hereditary hyperlipidemic (WHHL) rabbit model. MATERIAL AND METHODS: Aortic 3D steady-state free precession angiography and subrenal aortic 3D black-blood fast spin-echo vessel wall imaging pre- and post-Gadolinium (Gd) was performed in 14 WHHL rabbits (3 normal, 6 high-cholesterol diet, and 5 high-cholesterol diet plus endothelial denudation) on a commercial 1.5 T MR system. Angiographic lumen diameter, vessel wall thickness, signal-/contrast-to-noise analysis, total vessel area, lumen area, and vessel wall area were analyzed semiautomatically. RESULTS: Pre-Gd, both lumen and wall dimensions (total vessel area, lumen area, vessel wall area) of group 2 + 3 were significantly increased when compared with those of group 1 (all P < 0.01). Group 3 animals had significantly thicker vessel walls than groups 1 and 2 (P < 0.01), whereas angiographic lumen diameter was comparable among all groups. Post-Gd, only diseased animals of groups 2 + 3 showed a significant (>100%) signal-to-noise ratio and contrast-to-noise increase. CONCLUSIONS: A combination of novel 3D magnetic resonance angiography and high-resolution 3D vessel wall MRI enabled quantitative characterization of various atherosclerotic stages including positive arterial remodeling and Gd uptake in a WHHL rabbit model using a commercially available 1.5 T MRI system.
Resumo:
The hematopoietic stem cell (HSC) is probably the best characterized somatic stem cell and is still the only one regularly used in clinical practice. Nevertheless, expansion of HSCs in vitro has been surprisingly unsuccessful, limiting their full therapeutic potential. During homeostasis, the vast majority of HSCs are found in the bone marrow (BM) localized to specific microenvironments called stem cell "niches." Over the last few years our knowledge of cellular niche components and the signaling molecules that coordinate the crosstalk between HSCs and niche cells has dramatically increased. Here we review the two main niche types found in the BM: the endosteal and the vascular niches, and provide an overview of the different signaling and cell adhesion molecules that form the HSC-niche synapse. Signals from BM niches not only control HSC dormancy, but also regulate the balance between self-renewal and differentiation. In the future, successful expansion of HSCs for therapeutic use will require three-dimensional reconstruction of a stem cell-niche unit.
Resumo:
Supplementation of elderly institutionalized women with vitamin D and calcium decreased hip fractures and increased hip bone mineral density. Quantitative ultrasound (QUS) measurements can be performed in nursing homes, and easily repeated for follow-up. However, the effect of the correction of vitamin D deficiency on QUS parameters is not known. Therefore, 248 institutionalized women aged 62-98 years were included in a 2-year open controlled study. They were randomized into a treated group (n = 124), receiving 440 IU of vitamin D3 combined with 500 mg calcium (1250 mg calcium carbonate, Novartis) twice daily, and a control group (n = 124). One hundred and three women (42%), aged 84.5 +/- 7.5 years, completed the study: 50 in the treated group, 53 in the controls. QUS of the calcaneus, which measures BUA (broadband ultrasound attenuation) and SOS (speed of sound), and biochemical analysis were performed before and after 1 and 2 years of treatment. Only the results of the women with a complete follow-up were taken into account. Both groups had low initial mean serum 25-hydroxyvitamin D levels (11.9 +/- 1.2 and 11.7 +/- 1.2 micrograms/l; normal range 6.4-40.2 micrograms/l) and normal mean serum parathyroid hormone (PTH) levels (43.1 +/- 3.2 and 44.6 +/- 3.5 ng/l; normal range 10-70 ng/l, normal mean 31.8 +/- 2.3 ng/l). The treatment led to a correction of the metabolic disturbances, with an increase in 25-hydroxyvitamin D by 123% (p < 0.01) and a decrease in PTH by 18% (p < 0.05) and of alkaline phosphatase by 15% (p < 0.01). In the controls there was a worsening of the hypovitaminosis D, with a decrease of 25-hydroxyvitamin D by 51% (p < 0.01) and an increase in PTH by 51% (p < 0.01), while the serum calcium level decreased by only 2% (p < 0.01). After 2 years of treatment BUA increased significantly by 1.6% in the treated group (p < 0.05), and decreased by 2.3% in the controls (p < 0.01). Therefore, the difference in BUA between the treated subjects and the controls (3.9%) was significant after 2 years (p < 0.01). However, SOS decreased by the same amount in both groups (approximately 0.5%). In conclusion, BUA, but not SOS, reflected the positive effect on bone of supplementation with calcium and vitamin D3 in a population of elderly institutionalized women.
Resumo:
La planification scanographique (3D) a démontré son utilité pour une reconstruction anatomique plus précise de la hanche (longueur du fémur, centre de rotation, offset, antéversion et rétroversion). Des études ont montré que lors de la planification 2D 50% seulement correspondaient à l'implant définitif du fémur alors que dans une autre étude ce taux s'élevait à 94% pour une planification 3D. Les erreurs étaient liées à l'agrandissement des radiographies. L'erreur sur la taille de la tige est liée à l'estimation inadéquate de la morphologie osseuse ainsi qu'à la densité osseuse. L'erreur de l'antéversion, augmentée par l'inclinaison du bassin, a pu être éliminée par la planification 3D et l'offset restauré dans 98%. Cette étude est basée sur une nouvelle technique de planification scanographique en trois dimensions pour une meilleure précision de la reconstruction de la hanche. Le but de cette étude est de comparer l'anatomie post-opératoire à celle préopératoire en comparant les tailles d'implant prévu lors de la planification 3D à celle réellement utilisée lors de l'opération afin de déterminer l'exactitude de la restauration anatomique avec étude des différents paramètres (centre de rotation, densité osseuse, L'offset fémoral, rotations des implants, longueur du membre) à l'aide du Logiciel HIP-PLAN (Symbios) avec évaluation de la reproductibilité de notre planification 3D dans une série prospective de 50 patients subissant une prothèse totale de hanche non cimentée primaire par voie antérieure. La planification pré-opératoire a été comparée à un CTscan postopératoire par fusion d'images. CONCLUSION ET PRESPECTIVE Les résultats obtenus sont les suivants : La taille de l'implant a été prédit correctement dans 100% des tiges, 94% des cupules et 88% des têtes (longueur). La différence entre le prévu et la longueur de la jambe postopératoire était de 0,3+2,3 mm. Les valeurs de décalage global, antéversion fémorale, inclinaison et antéversion de la cupule étaient 1,4 mm ± 3,1, 0,6 ± 3,3 0 -0,4 0 ± 5 et 6,9 ° ± 11,4, respectivement. Cette planification permet de prévoir la taille de l'implant précis. Position de la tige et de l'inclinaison de la cupule sont exactement reproductible. La planification scanographique préopératoire 3D permet une évaluation précise de l'anatomie individuelle des patients subissant une prothèse totale de hanche. La prédiction de la taille de l'implant est fiable et la précision du positionnement de la tige est excellente. Toutefois, aucun avantage n'est observée en termes d'orientation de la cupule par rapport aux études impliquant une planification 2D ou la navigation. De plus amples recherches comparant les différentes techniques de planification pré-opératoire à la navigation sont nécessaire.
Resumo:
Background/Purpose: Since the end of 2009, an ultrasound scoring call SONAR has been implemented for RA patients as a routine tool in the SCQM registry (Swiss Clinical Quality Management registry for rheumatic diseases). A cross-sectional evaluation of patients with active disease and clinical remission according to the DAS28ESR and the novel ACR/EULAR remission criteria from 2010 clearly indicated a good correlational external validity of synovial pathologies with clinical disease activity in RA (2012 EULAR meeting. Objective: of this study was to evaluate the sensitivity to change of B-mode and Power-Doppler scores in a longitudinal perspective along with the changes in DAS28ESR in two consecutive visits among the patients included in the SCQM registry Methods: All patients who had at least two SONAR scores and simultaneous DAS28ESR evaluations between December 2009 and June 2012 were included in this study. The data came from 20 different operators working mostly in hospitals but also in private practices, who had received a previous teaching over 3 days in a reference center. The SONAR score includes a semi-quantitative B mode and Power-Doppler evaluation of 22 joints from 0 to 3, maximum 66 points for each score. The selection of these 22 joints was done in analogy to a 28 joint count and further restricted to joint regions with published standard ultrasound images. Both elbows and wrist joints were dynamically scanned from the dorsal and the knee joints from a longitudinal suprapatellar view in flexion and in joint extension. The bilateral evaluation of the second to fifth metacarpophalangeal and proximal interphalangeal joints was done from a palmar view in full extension, and the Power-Doppler scoring from a dorsal view with hand and finger position in best relaxation. Results: From the 657 RA patients with at least one score performed, 128 RA patients with 2 or more consultations of DAS28ESR, and a complete SONAR data set could be included. The mean (SD) time between the two evaluations was 9.6 months (54). The mean (SD) DAS28ESR was: 3.5 (1.3) at the first visit and was significantly lower (mean 3.0, SD.2.0, p:_0.0001) at the second visit. The mean (SD) of the total B mode was 12 (9.5) at baseline and 9.6 (7.6) at follow-up (p_0.0004). The Power-Doppler score at entry was 2.9 (5.7) and 1.9 (3.6), at the second visit, p _0.0001. The Pearson r correlation between change in DAS28ESR and the B mode was 0.44 (95% CI: 0.29, 0.57, p_ 0.0001),and 0.35 (95% CI: 0.16, 0.50, p _ 0.0002) for the Power-Doppler score,. Clinical relevant change in DAS (_1.1) was associated with a change of total B mode score _3 in 23/32 patients and a change a Doppler score _0.5 in 19/26. Conclusion: This study confirms that the SONAR score is sensitive to change and provides a complementary method of assessing RA disease activity to the DAS that could be very useful in daily practice.
Resumo:
INTRODUCTION: to assess the outcome of endovascular aortic aneurysm repair (EVAR) using intravascular ultrasound (IVUS) without angiography. MATERIALS/METHODS: eighty consecutive patients (median age 69 years (range 25-90): male 72 (90%), female 8 (10%)) underwent endovascular aneurysm repair (AAA 68 (85%), TAA 12 (15%)) using either angiography in 31/80 patients (39%) or IVUS in 49/80 patients (61%) in accordance to the surgeons preference. RESULTS: hospital mortality was 2/80 (3%), 1/68 for AAA (2%), 1/12 for TAA (8%), 2/31 for angiography (7%), and 0/49 for IVUS (0.0%: NS). Median quantity of contrast medium was 190 ml (range: 20-350) for angiography versus 0 ml for IVUS (p<0.01). Median X-ray exposure time 24 min (range 9-65 min) versus 8 min (range 0-60 min) for IVUS (p<0.05). No coverage of renal or suprarenal artery orifices occurred in either group. Conversion to open surgery was necessary in 4/80 patients (5%), 1/31 for angiography (3%) and 3/49 patients for IVUS (6%: NS). Early endoleaks were observed in 13/80 patients (16%): 8/31 patients for angiography (26%) versus 5/49 for IVUS (10%: p<0.05): 5/13 endoleaks resolved spontaneously (39%) whereas 8/13 (61%) required additional procedures. CONCLUSIONS: IVUS is a reliable tool for EVAR. In most cases, perprocedural angiography is not necessary.
Resumo:
MCT2 is the major neuronal monocarboxylate transporter (MCT) that allows the supply of alternative energy substrates such as lactate to neurons. Recent evidence obtained by electron microscopy has demonstrated that MCT2, like alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptors, is localized in dendritic spines of glutamatergic synapses. Using immunofluorescence, we show in this study that MCT2 colocalizes extensively with GluR2/3 subunits of AMPA receptors in neurons from various mouse brain regions as well as in cultured neurons. It also colocalizes with GluR2/3-interacting proteins, such as C-kinase-interacting protein 1, glutamate receptor-interacting protein 1 and clathrin adaptor protein. Coimmunoprecipitation of MCT2 with GluR2/3 and C-kinase-interacting protein 1 suggests their close interaction within spines. Parallel changes in the localization of both MCT2 and GluR2/3 subunits at and beneath the plasma membrane upon various stimulation paradigms were unraveled using an original immunocytochemical and transfection approach combined with three-dimensional image reconstruction. Cell culture incubation with AMPA or insulin triggered a marked intracellular accumulation of both MCT2 and GluR2/3, whereas both tumor necrosis factor alpha and glycine (with glutamate) increased their cell surface immunolabeling. Similar results were obtained using Western blots performed on membrane or cytoplasm-enriched cell fractions. Finally, an enhanced lactate flux into neurons was demonstrated after MCT2 translocation on the cell surface. These observations provide unequivocal evidence that MCT2 is linked to AMPA receptor GluR2/3 subunits and undergoes a similar translocation process in neurons upon activation. MCT2 emerges as a novel component of the synaptic machinery putatively linking neuroenergetics to synaptic transmission.
Resumo:
OBJECTIVE: To evaluate the correlation between clinical measures of disease activity and a ultrasound (US) scoring system for synovitis applied by many different ultrasonographers in a daily routine care setting within the Swiss registry for RA (SCQM) and further to determine the sensitivity to change of this US Score. METHODS: One hundred and eight Swiss rheumatologists were trained in performing the Swiss Sonography in Arthritis and Rheumatism (SONAR) score. US B-mode and Power Doppler (PwD) scores were correlated with DAS28 and compared between the clinical categories in a cross-sectional cohort of patients. In patients with a second US (longitudinal cohort), we investigated if change in US score correlated with change in DAS and evaluated the responsiveness of both methods. RESULTS: In the cross-sectional cohort with 536 patients, correlation between the B-mode score and DAS28 was significant but modest (Pearson coefficient r=0.41, P<0.0001). The same was true for the PwD score (r=0.41, P<0.0001). In the longitudinal cohort with 183 patients we also found a significant correlation between change in B-mode and in PwD score with change in DAS28 (r=0.54, P<0.0001 and r=0.46, P<0.0001, respectively). Both methods of evaluation (DAS and US) showed similar responsiveness according to standardized response mean (SRM). CONCLUSIONS: The SONAR Score is practicable and was applied by many rheumatologists in daily routine care after initial training. It demonstrates significant correlations with the degree of as well as change in disease activity as measured by DAS. On the level of the individual, the US score shows many discrepancies and overlapping results exist.
Resumo:
BACKGROUND: Angiographic studies suggest that acute vasospasm within 48 h of aneurysmal subarachnoid hemorrhage (SAH) predicts symptomatic vasospasm. However, the value of transcranial Doppler within 48 h of SAH is unknown. METHODS: We analyzed 199 patients who had at least 1 middle cerebral artery (MCA) transcranial Doppler examination within 48 h of SAH onset. Abnormal MCA mean blood flow velocity (mBFV) was defined as >90 cm/s. Delayed cerebral ischemia (DCI) was defined as clinical deterioration or radiological evidence of infarction due to vasospasm. RESULTS: Seventy-six patients (38%) had an elevation of MCA mBFV >90 cm/s within 48 h of SAH onset. The predictors of elevated mBFV included younger age (OR = 0.97 per year of age, p = 0.002), admission angiographic vasospasm (OR = 5.4, p = 0.009) and elevated white blood cell count (OR = 1.1 per 1,000 white blood cells, p = 0.003). Patients with elevated mBFV were more likely to experience a 10 cm/s fall in velocity at the first follow-up than those with normal baseline velocities (24 vs. 10%, p < 0.01), suggestive of resolving spasm. DCI developed in 19% of the patients. An elevated admission mBFV >90 cm/s during the first 48 h (adjusted OR = 2.7, p = 0.007) and a poor clinical grade (Hunt-Hess score 4 or 5, OR = 3.2, p = 0.002) were associated with a significant increase in the risk of DCI. CONCLUSION: Early elevations of mBFV correlate with acute angiographic vasospasm and are associated with a significantly increased risk of DCI. Transcranial Doppler ultrasound may be an early useful tool to identify patients at higher risk to develop DCI after SAH.
Resumo:
BACKGROUND: For patients with acute iliofemoral deep vein thrombosis, it remains unclear whether the addition of intravascular high-frequency, low-power ultrasound energy facilitates the resolution of thrombosis during catheter-directed thrombolysis. METHODS AND RESULTS: In a controlled clinical trial, 48 patients (mean age 50 ± 21 years, 52% women) with acute iliofemoral deep vein thrombosis were randomized to receive ultrasound-assisted catheter-directed thrombolysis (N = 24) or conventional catheter-directed thrombolysis (N = 24). Thrombolysis regimen (20 mg r-tPA over 15 hours) was identical in all patients. The primary efficacy end point was the percentage of thrombus load reduction from baseline to 15 hours according to the length-adjusted thrombus score, obtained from standardized venograms and evaluated by a core laboratory blinded to group assignment. The percentage of thrombus load reduction was 55% ± 27% in the ultrasound-assisted catheter-directed thrombolysis group and 54% ± 27% in the conventional catheter-directed thrombolysis group (P = 0.91). Adjunctive angioplasty and stenting was performed in 19 (80%) patients and in 20 (83%) patients, respectively (P > 0.99). Treatment-related complications occurred in 3 (12%) and 2 (8%) patients, respectively (P > 0.99). At 3-month follow-up, primary venous patency was 100% in the ultrasound-assisted catheter-directed thrombolysis group and 96% in the conventional catheter-directed thrombolysis group (P = 0.33), and there was no difference in the severity of the post-thrombotic syndrome (mean Villalta score: 3.0 ± 3.9 [range 0-15] versus 1.9 ± 1.9 [range 0-7]; P=0.21), respectively. CONCLUSIONS: In this randomized controlled clinical trial of patients with acute iliofemoral deep vein thrombosis treated with a fixed-dose catheter thrombolysis regimen, the addition of intravascular ultrasound did not facilitate thrombus resolution. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01482273.
Resumo:
For the detection and management of osteoporosis and osteoporosis-related fractures, quantitative ultrasound (QUS) is emerging as a relatively low-cost and readily accessible alternative to dual-energy X-ray absorptiometry (DXA) measurement of bone mineral density (BMD) in certain circumstances. The following is a brief, but thorough review of the existing literature with respect to the use of QUS in 6 settings: 1) assessing fragility fracture risk; 2) diagnosing osteoporosis; 3) initiating osteoporosis treatment; 4) monitoring osteoporosis treatment; 5) osteoporosis case finding; and 6) quality assurance and control. Many QUS devices exist that are quite different with respect to the parameters they measure and the strength of empirical evidence supporting their use. In general, heel QUS appears to be most tested and most effective. Overall, some, but not all, heel QUS devices are effective assessing fracture risk in some, but not all, populations, the evidence being strongest for Caucasian females over 55 years old. Otherwise, the evidence is fair with respect to certain devices allowing for the accurate diagnosis of likelihood of osteoporosis, and generally fair to poor in terms of QUS use when initiating or monitoring osteoporosis treatment. A reasonable protocol is proposed herein for case-finding purposes, which relies on a combined assessment of clinical risk factors (CR.F) and heel QUS. Finally, several recommendations are made for quality assurance and control.