113 resultados para 010103 Category Theory, K Theory, Homological Algebra


Relevância:

40.00% 40.00%

Publicador:

Resumo:

After years of reciprocal lack of interest, if not opposition, neuroscience and psychoanalysis are poised for a renewed dialogue. This article discusses some aspects of the Freudian metapsychology and its link with specific biological mechanisms. It highlights in particular how the physiological concept of homeostasis resonates with certain fundamental concepts of psychoanalysis. Similarly, the authors underline how the Freud and Damasio theories of brain functioning display remarkable complementarities, especially through their common reference to Meynert and James. Furthermore, the Freudian theory of drives is discussed in the light of current neurobiological evidences of neural plasticity and trace formation and of their relationships with the processes of homeostasis. The ensuing dynamics between traces and homeostasis opens novel avenues to consider inner life in reference to the establishment of fantasies unique to each subject. The lack of determinism, within a context of determinism, implied by plasticity and reconsolidation participates in the emergence of singularity, the creation of uniqueness and the unpredictable future of the subject. There is a gap in determinism inherent to biology itself. Uniqueness and discontinuity: this should today be the focus of the questions raised in neuroscience. Neuroscience needs to establish the new bases of a "discontinuous" biology. Psychoanalysis can offer to neuroscience the possibility to think of discontinuity. Neuroscience and psychoanalysis meet thus in an unexpected way with regard to discontinuity and this is a new point of convergence between them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The article is concerned with the formal definition of a largely unnoticed factor in narrative structure. Based on the assumptions that (1) the semantics of a written text depend, among other factors, directly on its visual alignment in space, that (2) the formal structure of a text has to meet that of its spatial presentation and that (3) these assumptions hold true also for narrative texts (which, however, in modern times typically conceal their spatial dimensions by a low-key linear layout), it is argued that, how ever low-key, the expected material shape of a given narrative determines the configuration of its plot by its author. The ,implied book' thus denotes an author's historically assumable, not necessarily conscious idea of how his text, which is still in the process of creation, will be dimensionally presented and under these circumstances visually absorbed. Assuming that an author's knowledge of this later (potentially) substantiated material form influences the composition, the implied book is to be understood as a text-genetically determined, structuring moment of the text. Historically reconstructed, it thus serves the methodical analysis of structural characteristics of a completed text.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The theory of language has occupied a special place in the history of Indian thought. Indian philosophers give particular attention to the analysis of the cognition obtained from language, known under the generic name of śābdabodha. This term is used to denote, among other things, the cognition episode of the hearer, the content of which is described in the form of a paraphrase of a sentence represented as a hierarchical structure. Philosophers submit the meaning of the component items of a sentence and their relationship to a thorough examination, and represent the content of the resulting cognition as a paraphrase centred on a meaning element, that is taken as principal qualificand (mukhyaviśesya) which is qualified by the other meaning elements. This analysis is the object of continuous debate over a period of more than a thousand years between the philosophers of the schools of Mimāmsā, Nyāya (mainly in its Navya form) and Vyākarana. While these philosophers are in complete agreement on the idea that the cognition of sentence meaning has a hierarchical structure and share the concept of a single principal qualificand (qualified by other meaning elements), they strongly disagree on the question which meaning element has this role and by which morphological item it is expressed. This disagreement is the central point of their debate and gives rise to competing versions of this theory. The Mïmāmsakas argue that the principal qualificand is what they call bhāvanā ̒bringing into being̒, ̒efficient force̒ or ̒productive operation̒, expressed by the verbal affix, and distinct from the specific procedures signified by the verbal root; the Naiyāyikas generally take it to be the meaning of the word with the first case ending, while the Vaiyākaranas take it to be the operation expressed by the verbal root. All the participants rely on the Pāninian grammar, insofar as the Mimāmsakas and Naiyāyikas do not compose a new grammar of Sanskrit, but use different interpretive strategies in order to justify their views, that are often in overt contradiction with the interpretation of the Pāninian rules accepted by the Vaiyākaranas. In each of the three positions, weakness in one area is compensated by strength in another, and the cumulative force of the total argumentation shows that no position can be declared as correct or overall superior to the others. This book is an attempt to understand this debate, and to show that, to make full sense of the irreconcilable positions of the three schools, one must go beyond linguistic factors and consider the very beginnings of each school's concern with the issue under scrutiny. The texts, and particularly the late texts of each school present very complex versions of the theory, yet the key to understanding why these positions remain irreconcilable seems to lie elsewhere, this in spite of extensive argumentation involving a great deal of linguistic and logical technicalities. Historically, this theory arises in Mimāmsā (with Sabara and Kumārila), then in Nyāya (with Udayana), in a doctrinal and theological context, as a byproduct of the debate over Vedic authority. The Navya-Vaiyākaranas enter this debate last (with Bhattoji Dïksita and Kaunda Bhatta), with the declared aim of refuting the arguments of the Mïmāmsakas and Naiyāyikas by bringing to light the shortcomings in their understanding of Pāninian grammar. The central argument has focused on the capacity of the initial contexts, with the network of issues to which the principal qualificand theory is connected, to render intelligible the presuppositions and aims behind the complex linguistic justification of the classical and late stages of this debate. Reading the debate in this light not only reveals the rationality and internal coherence of each position beyond the linguistic arguments, but makes it possible to understand why the thinkers of the three schools have continued to hold on to three mutually exclusive positions. They are defending not only their version of the principal qualificand theory, but (though not openly acknowledged) the entire network of arguments, linguistic and/or extra-linguistic, to which this theory is connected, as well as the presuppositions and aims underlying these arguments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dans la th´eorie des repr´esentations modulaires des groupes finis, les modules d?endo-permutation occupent une place importante. En e_et, c?est le r?ole jou´e par ces modules dans l?analyse de la structure de certains modules simples pour des groupes finis p-nilpotents, qui a amen´e E. Dade `a en introduire le concept, en 1978. Quelques ann´ees plus tard, L. Puig a d´emontr´e que la source de n?importe quel module simple pour un groupe fini p-r´esoluble quelconque est un module d?endo-permutation. Plus r´ecemment, on s?est rendu compte que ces modules interviennent aussi dans l?analyse locale des cat´egories d´eriv´ees et dans l?´etude des syst`emes de fusion. La situation que l?on consid`ere est la suivante. On se donne un nombre premier p, un p-groupe fini P, un corps alg´ebriquement clos k de caract´eristique p et on veut d´eterminer tous les kP-modules d?endo-permutation couverts ind´ecomposables de type fini, c?est-`a-dire tous les kP-modules ind´ecomposables de type fini, tels que leur alg`ebre d?endomorphismes est un kP-module de permutation ayant un facteur direct trivial. On d´efinit une relation d?´equivalence sur l?ensemble de ces kP-modules et le produit tensoriel des modules induit une structure de groupe ab´elien sur l?ensemble des classes d?´equivalence. On appelle ce groupe, le groupe de Dade de P. Ainsi, classifier les modules d?endo-permutation couverts revient `a d´eterminer le groupe de Dade de P. Le groupe de Dade d?un p-groupe fini arbitraire est encore inconnu, bien qu?E. Dade, en 1978, ´etait d´ej`a parvenu `a la classification dans le cas o`u P est ab´elien. La premi`ere partie de ce travail de th`ese est consacr´ee au probl`eme de la classification dans le cas g´en´eral et r´esoud la question dans le cas de deux familles de p-groupes finis, `a savoir celle des p-groupes m´etacycliques, pour un nombre premier p impair, et celle des 2-groupes extrasp´eciaux, de la forme D8 _ · · · _ D8. Ces deux choix ont ´et´e motiv´es par le fait que ces groupes sont "presque" ab´eliens. De plus, certains r´esultats sur la structure du groupe de Dade d?un p-groupe fini quelconque rendent le groupe de Dade des groupes de ces deux familles plus simple `a ´etudier. Dans un deuxi`eme temps, nous nous sommes int´eress´es `a deux occurrences de ces modules dans la th´eorie de la repr´esentation des groupes finis, c?est-`a-dire `a deux raisons qui motivent leur ´etude. Ainsi, nous avons r´ealis´e des modules d?endo-permutation comme sources de modules simples. En particulier, il s?av`ere que, dans le cas d?un nombre premier p impair, tout module d?endo-permutation ind´ecomposable dont la classe est un ´el´ement de torsion dans le groupe de Dade est la source d?un module simple. Finalement, nous avons d´etermin´e, parmi tous les modules d?endo-permutation connus actuellement, lesquels poss`edent une r´esolution de permutation endo-scind´ee. Nous sommes arriv´es `a la conclusion que les seuls modules d?endo-permutation qui n?ont pas de r´esolution de permutation endo-scind´ee sont les modules "exceptionnels" apparaissant pour un 2-groupe de quaternions g´en´eralis´es.<br/><br/>In modular representation theory, endo-permutation modules occupy an important position. Indeed, the role that these modules play, in the analysis of the structure of some particular simple modules for finite p-nilpotent groups, induced E. Dade, in 1978, to give them their current name. A few years later, L. Puig proved that the source of any simple module for any finite psolvable group is an endo-permutation module. More recently, the occurrence of endo-permutation modules has also been noticed in the local analysis of splendid equivalences between derived categories and in the study of fusion systems. We consider the following situation. Given a prime number p, a finite pgroup P and an algebraically closed field k of characteristic p, we are looking for all finitely generated indecomposable capped endo-permutation kP-modules. That is, all finitely generated indecomposable kP-modules such that their endomorphism algebra is a permutation kP-module having a trivial direct summand. Then, we define an equivalence relation on the set of all isomorphism classes of such modules, and it turns out that the tensor product (over k) induces a structure of abelian group on this set. We call this group the Dade group of P. Hence, classifying all indecomposable finitely generated capped endo-permutation kPmodules is equivalent to determining the Dade group of P. At present, the Dade group of an arbitrary finite p-group is still unknown. However, E. Dade computed the Dade group of all finite abelian p-groups, in 1978 already. The first part of this doctoral thesis is concerned with the problem of the classification in the general case and solve it in the case of two families of finite p-groups, namely the metacyclic p-groups, for an odd prime number p, and the extraspecial 2-groups of the shape D8 _· · ·_D8. These two choices have been motivated by the fact that these groups are not far from being abelian. Moreover, some general results concerning the Dade group of arbitrary finite p-groups suggest that the Dade group of the groups belonging to these two families is easier to study. In the second part of this thesis, we have been looking at two particular occurrences of these modules in representation theory of finite groups which motivate the interest of their classification. Thus, we realised endo-permutation modules as sources of simple modules. In particular, it turns out that, in case p is an odd prime, any indecomposable module whose class in the Dade group is a torsion element is the source of some simple module. Finally, we considered all the modules we know at present and determined which ones have an endo-split permutation resolution. We could then conclude that all but the "exceptionnal" modules occurring in the generalized quaternion case have an endo-split permutation resolution.<br/><br/>"Module d?endo-permutation" n?est pas le nom d?une maladie exotique contagieuse (du moins pas `a ma connaissance), comme vous pourriez peut-?etre l?imaginer si vous faites partie des personnes qui croient que le titre de docteur n?est destin´e qu?aux m´edecins. Dans ce cas, il se peut que le sujet dont il est question ici vous cause quelques naus´ees et r´eveille de douloureux souvenirs d?´ecole, car un module d?endo-permutation est un objet math´ematique, alg´ebrique, plus pr´ecis´ement. Ce concept a ´et´e introduit il y a un quart de si`ecle, de l?autre c?ot´e de l?Atlantique, et il s?est r´ev´el´e su_samment int´eressant pour qu?aujourd?hui il ait franchi bien des fronti`eres, celles de l?alg`ebre y compris. Mais de quoi s?agit-il ? Si vous entendez le terme "endo-permutation" probablement pour la premi`ere fois, ce n?est certainement pas le cas pour celui de "module". Cependant, sa d´efinition dans le pr´esent contexte ne co¨ýncide avec aucune de celles figurant dans les dictionnaires ordinaires. Les personnes qui ont d´ej`a entendu parler de Frobenius, Burnside, Schur, ou encore Brauer, pourront vous dire qu?un module est une repr´esentation. "De quoi ?" vous demanderezvous. "Un spectacle de marionnettes, peut-?etre ?" Bien s?ur que non ! Un module d?endo-permutation est une repr´esentation particuli`ere de certains groupes finis, o`u un groupe n?est pas un groupe de rock, comme vous pouvez vous en douter, mais d´esigne un objet math´ematique connu par tous les ´etudiants en sciences au terme de leur premi`ere ann´ee universitaire (en th´eorie, du moins). La "popularit´e" de la notion de groupe, fini ou non, est due au fait que les groupes sont fr´equemment utilis´es, aussi bien dans le domaine abstrait des math´ematiques, que dans le monde r´eel des physiciens, chimistes et autres biologistes (pour ne citer qu?eux). "Mais comment peut-on utiliser concr`etement ces objets invisibles ?" vous demanderez-vous alors. Et bien, justement, en les consid´erant par l?interm´ediaire de leurs repr´esentations, c?est-`a-dire en leur associant des matrices, de fa¸con plus ou moins naturelle. Or, comme il y a "beaucoup trop" de matrices pour un groupe donn´e, elles sont classifi´ees selon certaines de leurs propri´et´es, ce qui permet de les r´epertorier dans diverses familles (celle des modules d?endo-permutation, par exemple). Un groupe est ainsi rendu "concret", car les donn´ees matricielles sont manipulables par tous les scienti- fiques (et leurs ordinateurs), qui peuvent alors les utiliser dans leurs recherches, afin de contribuer au progr`es de la science. En toute franchise, c?est bien loin de ces soucis terre-`a-terre que ce travail de th`ese sur la classification des modules d?endo-permutation a ´et´e accompli. En fait, quitte `a choquer certaines ?ames sensibles, sa r´ealisation est surtout due au caract`ere ´epicure de son auteur, qui, avouons-le, en a ´et´e pleinement satisfait !

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In The Cognitive-Emotional Brain, Pessoa (2013) suggests that cognition and emotion should not be considered separately. We agree with this and argue that cognitive architectures can provide steady ground for this kind of theory integration and for investigating interactions among underlying cognitive processes. We briefly explore how affective components can be implemented and how neuroimaging measures can help validate models and influence theory development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The article presents a discussion of foundational issues in the field of management science, focusing on advances in management theory and research. The metaphor of explanatory lenses is used as a rubric to illustrate the theoretical challenges involved in elucidating the interrelationships of various factors in organizational behavior. The importance of clarifying such interrelationships is emphasized, from the standpoint of editing scholarly papers on such topics for publication. Topics discussed include communication and psychology in management, economics, and behavioral finance.