115 resultados para yellow light


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phototropism enables plants to orient growth towards the direction of light and thereby maximizes photosynthesis in low-light environments. In angiosperms, blue-light photoreceptors called phototropins are primarily involved in sensing the direction of light. Phytochromes and cryptochromes (sensing red/far-red and blue light, respectively) also modulate asymmetric hypocotyl growth, leading to phototropism. Interactions between different light-signaling pathways regulating phototropism occur in cryptogams and angiosperms. In this review, we focus on the molecular mechanisms underlying the co-action between photosensory systems in the regulation of hypocotyl phototropism in Arabidopsis thaliana. Recent studies have shown that phytochromes and cryptochromes enhance phototropism by controlling the expression of important regulators of phototropin signaling. In addition, phytochromes may also regulate growth towards light via direct interaction with the phototropins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryptochromes are a class of photosensory receptors that control important processes in animals and plants primarily by regulating gene expression. How photon absorption by cryptochromes leads to changes in gene expression has remained largely elusive. Three recent studies, including Lian and colleagues (pp. 1023-1028) and Liu and colleagues (pp. 1029-1034) in this issue of Genes & Development, demonstrate that the interaction of light-activated Arabidopsis cryptochromes with a class of regulatory components of E3 ubiquitin ligase complexes leads to environmentally controlled abundance of transcriptional regulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutaneous squamous cell carcinoma (SCC) represents the most important cutaneous complication following organ transplantation. It develops mostly on sun-exposed areas. A recent study showed the role of activating transcription factor 3 (ATF3) in SCC development following treatment with calcineurin inhibitors. It has been reported that ATF3, which may act as an oncogene, is under negative calcineurin/nuclear factor of activated T cells (NFAT) control and is upregulated by calcineurin inhibitors. Still, these findings do not fully explain the preferential appearance of SCC on chronically sun-damaged skin. We analyzed the influence of UV radiation on ATF3 expression and its potential role in SCC development. We found that ATF3 is a specifically induced AP1 member in SCC of transplanted patients. Its expression was strongly potentiated by combination of cyclosporine A and UVA treatment. UVA induced ATF3 expression through reactive oxygen species-mediated nuclear factor erythroid 2-related factor 2 (NRF2) activation independently of calcineurin/NFAT inhibition. Activated NRF2 directly binds to ATF3 promoter, thus inducing its expression. These results demonstrate two mechanisms that independently induce and, when combined together, potentiate the expression of ATF3, which may then force SCC development. Taking into account the previously defined role of ATF3 in the SCC development, these findings may provide an explanation and a mechanism for the frequently observed burden on SCCs on sun-exposed areas of the skin in organ transplant recipients treated by calcineurin inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Higher plants use several classes of blue light receptors to modulate a wide variety of physiological responses. Among them, both the phototropins and members of the Zeitlupe (ZTL) family use light oxygen voltage (LOV) photosensory domains. In Arabidopsis, these families comprise phot1, phot2 and ZTL, LOV Kelch Protein 2 (LKP2), and Flavin-binding Kelch F-box1 (FKF1). It has now been convincingly shown that blue-light-induced autophosphorylation of the phot1 kinase domain is an essential step in signal transduction. Recent experiments also shed light on the partially distinct photosensory specificities of phot1 and phot2. Phototropin signaling branches rapidly following photoreceptor activation to mediate distinct responses such as chloroplast movements or phototropism. Light activation of the LOV domain in ZTL family members modulates their capacity to interact with GIGANTEA (GI) and their ubiquitin E3 ligase activity. A complex between GI and FKF1 is required to trigger the degradation of a repressor of CO (CONSTANS) expression and thus modulates flowering time. In contrast, light-regulated complex formation between ZTL and GI appears to limit the capacity of ZTL to degrade its targets, which are part of the circadian oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When colonizing a new habitat, populations must adapt their sexual behaviour to new ecological constraints. Because caves display drastically different conditions from surface habitats and cave animals are deprived from visual information, hypogean populations are expected to have modified their mate preference and signalling behaviour after cave colonization. Here, we experimentally examined the female preference and the sexual behaviour of brook newts Calotriton asper from different cave and river populations, either in light or in darkness. Our results suggest that females prefer large individuals in both hypogean and epigean populations, but that this preference is only expressed in the light conditions of their native habitat. Hence, some mate choice criteria would be maintained across genetically divergent populations and throughout dissimilar habitats. However, this sexual behaviour is likely to be expressed via a different sensory pathway in the different habitats, suggesting that a sensory shift has occurred in cave populations, enabling animals to communicate through a non-visual channel.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-idiotype antibody therapy of B-cell lymphomas, despite numerous promising experimental and clinical studies, has so far met with limited success. Tailor-made monoclonal anti-idiotype antibodies have been injected into a large series of lymphoma patients, with a few impressive complete tumour remissions but a large majority of negative responses. The results presented here suggest that, by coupling to antilymphoma idiotype antibodies a few molecules of the tetanus toxin universal epitope peptide P2 (830-843), one could markedly increase the efficiency of this therapy. We show that after 2-hr incubation with conjugates consisting of the tetanus toxin peptide P2 coupled by an S-S bridge to monoclonal antibodies directed to the lambda light chain of human immunoglobulin, human B-lymphoma cells can be specifically lysed by a CD4 T-lymphocyte clone specific for the P2 peptide. Antibody without peptide did not induce B-cell killing by the CD4 T-lymphocyte clone. The free cysteine-peptide was also able to induce lysis of the B-lymphoma target by the T-lymphocyte clone, but at a molar concentration 500 to 1000 times higher than that of the coupled peptide. Proliferation assays confirmed that the antibody-peptide conjugate was antigenically active at a much lower concentration than the free peptide. They also showed that antibody-peptide conjugates required an intact processing function of the B cell for peptide presentation, which could be selectively inhibited by leupeptin and chloroquine.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blue light mediates the phosphorylation of a membrane protein in seedlings from several plant species. When crude microsomal membrane proteins from dark-grown pea (Pisum sativum L.), sunflower (Helianthus annuus L.), zucchini (Cucurbita pepo L.), Arabidopsis (Arabidopsis thaliana L.), or tomato (Lycopersicon esculentum L.) stem segments, or from maize (Zea mays L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), wheat (Triticum aestivum L.), or sorghum (Sorghum bicolor L.) coleoptiles are illuminated and incubated in vitro with [gamma-(32)P]ATP, a protein of apparent molecular mass from 114 to 130 kD is rapidly phosphorylated. Hence, this system is probably ubiquitous in higher plants. Solubilized maize membranes exposed to blue light and added to unirradiated solubilized maize membranes show a higher level of phosphorylation of the light-affected protein than irradiated membrane proteins alone, suggesting that an unirradiated substrate is phosphorylated by a light-activated kinase. This finding is further demonstrated with membrane proteins from two different species, where the phosphorylated proteins are of different sizes and, hence, unambiguously distinguishable on gel electrophoresis. When solubilized membrane proteins from one species are irradiated and added to unirradiated membrane proteins from another species, the unirradiated protein becomes phosphorylated. These experiments indicate that the irradiated fraction can store the light signal for subsequent phosphorylation in the dark. They also support the hypothesis that light activates a specific kinase and that the systems share a close functional homology among different higher plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: 5,10,15,20-Tetrakis(m-hydroxyphenyl)chlorin (mTHPC)-mediated photodynamic therapy (PDT) has shown insufficient tumor selectivity for the treatment of pleural mesothelioma. Tumor selectivity of mTHPC-PDT may be enhanced in the presence of the TAT-RasGAP(317-326) peptide which has the potential to specifically sensitize tumor cells to cytostatic agents. MATERIALS AND METHODS: H-meso-1 and human fibroblast cell cultures, respectively, were exposed to two different mTHPC doses followed by light delivery with and without TAT-RasGAP(317-326) administration. mTHPC was added to the cultures at a concentration of 0.04microg/ml and 0.10microg/ml, respectively, 24h before laser light illumination at 652nm (3J/cm(2), 40mW/cm(2)). TAT-RasGAP(317-326) was added to the cultures immediately after light delivery at a concentration of 20microM. The apoptosis rate was determined by scoring the cells displaying pycnotic nuclei. Cell viability was measured by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: Light delivery associated with 0.04microg/ml mTHPC resulted in a significantly higher apoptosis rate in the presence of TAT-RasGAP(317-326) than without in H-meso-1 cells (p<0.05) but not in fibroblasts. In contrast, 1.0microg/ml mTHPC and light resulted in a significantly higher apoptosis rate in both H-meso-1 cells and fibroblasts as compared to controls (p<0.05) but the addition of TAT-RasGAP(317-326) did not lead to a further significant increase of the apoptosis rate of both H-meso-1 cells and fibroblasts as compared to mTHPC and light delivery alone. CONCLUSION: TAT-RasGAP(317-326) selectively enhanced the effect of mTHPC and light delivery on H-meso-1 cells but not on fibroblasts. However, this effect was mTHPC dose-dependent and occurred only at a low sensitizer dose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlates of immune-mediated protection to most viral and cancer vaccines are still unknown. This impedes the development of novel vaccines to incurable diseases such as HIV and cancer. In this study, we have used functional genomics and polychromatic flow cytometry to define the signature of the immune response to the yellow fever (YF) vaccine 17D (YF17D) in a cohort of 40 volunteers followed for up to 1 yr after vaccination. We show that immunization with YF17D leads to an integrated immune response that includes several effector arms of innate immunity, including complement, the inflammasome, and interferons, as well as adaptive immunity as shown by an early T cell response followed by a brisk and variable B cell response. Development of these responses is preceded, as demonstrated in three independent vaccination trials and in a novel in vitro system of primary immune responses (modular immune in vitro construct [MIMIC] system), by the coordinated up-regulation of transcripts for specific transcription factors, including STAT1, IRF7, and ETS2, which are upstream of the different effector arms of the immune response. These results clearly show that the immune response to a strong vaccine is preceded by coordinated induction of master transcription factors that lead to the development of a broad, polyfunctional, and persistent immune response that integrates all effector cells of the immune system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoid-induced tumor necrosis factor receptor (GITR) is a member of the tumor necrosis factor receptor superfamily, is expressed in T lymphocytes, and exerts an anti-apoptotic function in these cells. We reported that GITR is also highly expressed in the skin, specifically in keratinocytes, and that it is under negative transcriptional control of p21(Cip1/WAF1), independently from the cell cycle. Although GITR expression is higher in p21-deficient keratinocytes and skin, it is down-modulated with differentiation and in response to UVB. The combined analysis of keratinocytes with increased GITR expression versus normal keratinocytes and skin of mice with a disruption of the GITR gene indicates that this protein protects keratinocytes from UVB-induced apoptosis both in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Yellow fever vaccine (17DV) has been investigated incompletely in human immunodeficiency virus (HIV)-infected patients, and adequate immunogenicity and safety are of concern in this population. METHODS: In the Swiss HIV Cohort Study, we identified 102 patients who received 17DV while they were HIV infected. We analyzed neutralization titers (NTs) after 17DV administration using the plaque reduction neutralization test. NTs of 1:>or=10 were defined as reactive, and those of 1:<10 were defined as nonreactive, which was considered to be nonprotective. The results were compared with data for HIV-uninfected individuals. Serious adverse events were defined as hospitalization or death within 6 weeks after receipt of 17DV. RESULTS: At the time of 17DV administration, the median CD4 cell count was 537 cells/mm(3) (range, 11-1730 cells/mm(3)), and the HIV RNA level was undetectable in 41 of 102 HIV-infected patients. During the first year after vaccination, fewer HIV-infected patients (65 [83%] of 78; P = .01) than HIV-uninfected patients revealed reactive NTs, and their NTs were significantly lower (P < .001) than in HIV-uninfected individuals. Eleven patients with initially reactive NTs lost these reactive NTs <or= 5 years after vaccination. Higher NTs during the first year after vaccination were associated with undetectable HIV RNA levels, increasing CD4 cell count, and female sex. We found no serious adverse events after 17DV administration among HIV-infected patients. CONCLUSION: Compared with HIV-uninfected individuals, HIV-infected patients respond to 17DV with lower reactive NTs, more often demonstrate nonprotective NTs, and may experience a more rapid decline in NTs during follow-up. Vaccination with 17DV appears to be safe in HIV-infected individuals who have high CD4 cell counts, although rate of serious adverse events of up to 3% cannot be excluded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to compare the effects of 2 different prior endurance exercises on subsequent whole-body fat oxidation kinetics. Fifteen men performed 2 identical submaximal incremental tests (Incr2) on a cycle ergometer after (i) a ∼40-min submaximal incremental test (Incr1) followed by a 90-min continuous exercise performed at 50% of maximal aerobic power-output and a 1-h rest period (Heavy); and (ii) Incr1 followed by a 2.5-h rest period (Light). Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity during Incr1 and Incr2. A sinusoidal equation, including 3 independent variables (dilatation, symmetry and translation), was used to characterize the fat oxidation kinetics and to determine the intensity (Fat(max)) that elicited the maximal fat oxidation (MFO) during Incr. After the Heavy and Light trials, Fat(max), MFO, and fat oxidation rates were significantly greater during Incr2 than Incr1 (p < 0.001). However, Δ (i.e., Incr2-Incr1) Fat(max), MFO, and fat oxidation rates were greater in the Heavy compared with the Light trial (p < 0.05). The fat oxidation kinetics during Incr2(Heavy) showed a greater dilatation and rightward asymmetry than Incr1(Heavy), whereas only a greater dilatation was observed in Incr2(Light) (p < 0.05). This study showed that although to a lesser extent in the Light trial, both prior exercise sessions led to an increase in Fat(max), MFO, and absolute fat oxidation rates during Incr2, inducing significant changes in the shape of the fat oxidation kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To study VP22 light controlled delivery of antisense oligonucleotide (ODN) to ocular cells in vitro and in vivo. METHODS: The C-terminal half of VP22 was expressed in Escherichia coli, purified and mixed with 20 mer phosphorothioate oligonucleotides (ODNs) to form light sensitive complex particles (vectosomes). Uptake of vectosomes and light induced redistribution of ODNs in human choroid melanoma cells (OCM-1) and in human retinal pigment epithelial cells (ARPE-19) were studied by confocal and electron microscopy. The effect of vectosomes formed with an antisense ODN corresponding to the 3'-untranslated region of the human c-raf kinase gene on the viability and the proliferation of OCM-1 cells was assessed before and after illumination. Cells incubated with vectosomes formed with a mismatched ODN, a free antisense ODN or a free mismatched ODN served as controls. White light transscleral illumination was carried out 24 h after the intravitreal injection of vectosomes in rat eyes. The distribution of fluorescent vectosomes and free fluorescent ODN was evaluated on cryosections by fluorescence microscopy before, and 1 h after illumination. RESULTS: Overnight incubation of human OCM-1 and ARPE-19 cells with vectosomes lead to intracellular internalization of the vectosomes. When not illuminated, internalized vectosomes remained stable within the cell cytoplasm. Disruption of vectosomes and release of the complexed ODN was induced by illumination of the cultures with a cold white light or a laser beam. In vitro, up to 60% inhibition of OCM-1 cell proliferation was observed in illuminated cultures incubated with vectosomes formed with antisense c-raf ODN. No inhibitory effect on the OCM-1 cell proliferation was observed in the absence of illumination or when the cells are incubated with a free antisense c-raf ODN and illuminated. In vivo, 24 h after intravitreal injection, vectosomes were observed within the various retinal layers accumulating in the cytoplasm of RPE cells. Transscleral illumination of the injected eyes with a cold white light induced disruption of the vectosomes and a preferential localization of the "released" ODNs within the cell nuclei of the ganglion cell layer, the inner nuclear layer and the RPE cells. CONCLUSIONS: In vitro, VP22 light controlled delivery of ODNs to ocular cells nuclei was feasible using white light or laser illumination. In vivo, a single intravitreal injection of vectosomes, followed by transscleral illumination allowed for the delivery of free ODNs to retinal and RPE cells.