217 resultados para visual discrimination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study is to determine whether statistical associations can be demonstrated in ocular syphilis between baseline clinical and laboratory parameters with visual acuity at presentation and with any change in visual acuity after treatment. METHODS: Charts of 26 patients (42 eyes) with ocular syphilis presenting to the Uveitis clinic of the Jules-Gonin Eye Hospital were reviewed. A baseline cross-sectional analysis was performed in order to identify any association between visual acuity at presentation and demographic, clinical or laboratory parameters. After treatment, any analogy between these parameters and a change in visual acuity was subsequently assessed in a series of univariate comparisons. RESULTS: The following factors were associated with worse initial visual acuity: severity of visual field impairment at presentation (p=0.012), macular oedema (p=0.004) and optic neuropathy (p=0.031). There was a borderline association with the presence of vasculitis on fluroangiography (p=0.072). Improvement in best corrected visual acuity after treatment was significantly associated with the presence of vasculitis on fluroangiography (p=0.005), neurosyphilis, according to lumbar puncture findings (p=0.037) and marginally with anterior uveitis (p=0.070). Inflammation relapse was associated with the coexistence of pain as presenting sign (p<0.001) and with a longer duration of symptoms prior to the initial visit (p=0.023). CONCLUSIONS: Severe ocular inflammation associated with vasculitis, vitritis or anterior uveitis in ocular syphilis would appear to be a reversible phenomenon that responds well to appropriate antibiotic treatment, resulting in improvement in visual acuity. Prompt treatment enables a good visual prognosis, while any delay in therapy increases the risk of subsequent relapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT are functionally linked and temporally synchronized during time encoding whereas they are functionally independent and operate serially (V1 followed by V5/MT) while maintaining temporal information in working memory. These data challenge the traditional view of V1 and V5/MT as visuo-spatial features detectors and highlight the functional contribution and the temporal dynamics of these brain regions in the processing of time in millisecond range. The present project resulted in the paper entitled: 'How the visual brain encodes and keeps track of time' by Paolo Salvioni, Lysiann Kalmbach, Micah Murray and Domenica Bueti that is now submitted for publication to the Journal of Neuroscience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons projecting transitorily into the corpus callosum from area 17 of the cat were retrogradely labeled by the fluorescent tracer Fast Blue (FB) injected into contralateral areas 17 and 18 on postnatal days 1-5. During the second postnatal month these neurons were still labeled by the early injection, although they had eliminated their callosal axon. At this time, 15-20% of these neurons could be retrogradely relabeled by injections of Diamidino Yellow (DY) into ipsilateral areas 17 and 18, but few or none by similar injections in the other areas that receive from area 17 (19, 21a, PMLS, 20a, 20b, DLS). Similarly, area 17 neurons projecting transitorily to contralateral area PMLS during the first postnatal week could be relabeled by DY injections in ipsilateral areas 17 and 18 but not in PMLS. Already around birth, many transitorily callosal neurons in area 17 send bifurcating axons both to contralateral areas 17 and 18 and ipsilateral area 18. It is probable that during postnatal development some of these neurons selectively eliminate their callosal axon collaterals and maintain the projection to ipsilateral area 18. In fact, some transitorily callosal neurons in area 17 can be double-labeled by simultaneous perinatal injections of FB in contralateral areas 17 and 18 and of a new long-lasting retrograde tracer, rhodamine-conjugated latex microspheres, in ipsilateral area 18. The same neurons can then be relabeled by reinjecting ipsilateral area 18 with DY during the second postnatal month. This finding, however, does not exclude the possibility that some transitorily callosal neurons send an axon to ipsilateral area 18 after eliminating their callosal axon. In conclusion, area 17 neurons that project transitorily through the corpus callosum later participate, probably permanently, in ipsilateral corticocortical projections but selectively to areas 17-18. The mechanism responsible for this selectivity is unknown, but it may be related to the differential radial distribution (i.e., to birth date) of area 17 neurons engaged in the various corticocortical projections. The problems raised by the use of long-lasting retrograde fluorescent tracers in neurodevelopmental studies and by the quantification of results of double- and triple-labeling paradigms are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional magnetic resonance imaging studies have indicated that efficient feature search (FS) and inefficient conjunction search (CS) activate partially distinct frontoparietal cortical networks. However, it remains a matter of debate whether the differences in these networks reflect differences in the early processing during FS and CS. In addition, the relationship between the differences in the networks and spatial shifts of attention also remains unknown. We examined these issues by applying a spatio-temporal analysis method to high-resolution visual event-related potentials (ERPs) and investigated how spatio-temporal activation patterns differ for FS and CS tasks. Within the first 450 msec after stimulus onset, scalp potential distributions (ERP maps) revealed 7 different electric field configurations for each search task. Configuration changes occurred simultaneously in the two tasks, suggesting that contributing processes were not significantly delayed in one task compared to the other. Despite this high spatial and temporal correlation, two ERP maps (120-190 and 250-300 msec) differed between the FS and CS. Lateralized distributions were observed only in the ERP map at 250-300 msec for the FS. This distribution corresponds to that previously described as the N2pc component (a negativity in the time range of the N2 complex over posterior electrodes of the hemisphere contralateral to the target hemifield), which has been associated with the focusing of attention onto potential target items in the search display. Thus, our results indicate that the cortical networks involved in feature and conjunction searching partially differ as early as 120 msec after stimulus onset and that the differences between the networks employed during the early stages of FS and CS are not necessarily caused by spatial attention shifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporotic hip fractures increase dramatically with age and are responsible for considerable morbidity and mortality. Several treatments to prevent the occurrence of hip fracture have been validated in large randomized trials and the current challenge is to improve the identification of individuals at high risk of fracture who would benefit from therapeutic or preventive intervention. We have performed an exhaustive literature review on hip fracture predictors, focusing primarily on clinical risk factors, dual X-ray absorptiometry (DXA), quantitative ultrasound, and bone markers. This review is based on original articles and meta-analyses. We have selected studies that aim both to predict the risk of hip fracture and to discriminate individuals with or without fracture. We have included only postmenopausal women in our review. For studies involving both men and women, only results concerning women have been considered. Regarding clinical factors, only prospective studies have been taken into account. Predictive factors have been used as stand-alone tools to predict hip fracture or sequentially through successive selection processes or by combination into risk scores. There is still much debate as to whether or not the combination of these various parameters, as risk scores or as sequential or concurrent combinations, could help to better predict hip fracture. There are conflicting results on whether or not such combinations provide improvement over each method alone. Sequential combination of bone mineral density and ultrasound parameters might be cost-effective compared with DXA alone, because of fewer bone mineral density measurements. However, use of multiple techniques may increase costs. One problem that precludes comparison of most published studies is that they use either relative risk, or absolute risk, or sensitivity and specificity. The absolute risk of individuals given their risk factors and bone assessment results would be a more appropriate model for decision-making than relative risk. Currently, a group appointed by the World Health Organization and lead by Professor John Kanis is working on such a model. It will therefore be possible to further assess the best choice of threshold to optimize the number of women needed to screen for each country and each treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Crosslinking of corneal collagen with riboflavin and ultraviolet-A irradiation (CXL) induces crosslinks within and between collagen fibers. CXL increases corneal biomechanical and biochemical stability and is currently used clinically to treat keratectasia. CXL also significantly reduces the stromal swelling capacity. We investigated whether a modified CXL treatment protocol would be beneficial in early Fuchs' dystrophy with various degrees of corneal edema and diurnal variations in visual acuity. Methods: CXL was performed as published previously with the following modification: in cases where the stroma was thicker than 450 µm after abrasion and 30 minutes of instillation of isoosmolar riboflavin solution, glycerol 70% solution was applied every 5 seconds for two minutes, and central corneal thickness (CCT) was measured using ultrasound pachymetry. Glycerol 70% solution was administered repeatedly until the target corneal thickness of 370-430 µm was reached. During irradiation, CCT was monitored by ultrasound pachymetry every five minutes and glycerol 70% solution was applied, if necessary. Results: Three eyes in two patients were treated using the modified CXL protocol. Representative case: a 50-year-old woman with Fuchs' dystrophy and a history of 3 years of diurnal visual fluctuations was referred to us in March 2008. Preoperative best spectacle-corrected visual acuity (BSCVA) was 20/50. We performed modified CXL in the left eye. At one month after CXL, Scheimpflug analysis of CCT showed a reduction of more than 100 µm, and the Corneal Thickness Spatial Profile (CTSP) and Percentage of Increase in Thickness (PIT) showed a regularization of the "flattening" typical for Fuchs' dystrophy. Accordingly, diurnal analysis of corneal thickness showed a distinct postoperative reduction in CCT at all time points measured. At one month after CXL, the patient reported a reduction of diurnal visual fluctuations and we measured an increase in BSCVA to 20/32. The patient showed stable topographical and visual acuity at the three months follow-up. Conclusions: We saw a distinct reduction in CCT, an improvement of the corneal thickness spatial profile (CTSP) and an increase in BSCVA at one month after treatment, which remained stable at the three months follow-up. Patients with early Fuchs' dystrophy and disturbing diurnal visual fluctuations represent a novel application for CXL. Although CXL may not prevent the outcome of the dystrophy, it may increase the patients' visual comfort until keratoplasty becomes necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone ultrasound measures (QUSs) can assess fracture risk in the elderly. We compared three QUSs and their association with nonvertebral fracture history in 7562 Swiss women 70-80 years of age. The association between nonvertebral fracture was higher for heel than phalangeal QUS. INTRODUCTION: Because of the high morbidity and mortality associated with osteoporotic fractures, it is essential to detect subjects at risk for such fractures with screening methods. Because quantitative bone ultrasound (QUS) discriminated subjects with osteoporotic fractures from controls in several cross-sectional studies and predicted fractures in prospective studies, QUS could be more practical than DXA for screening. MATERIAL AND METHODS: This cross-sectional and retrospective multicenter (10 centers) study was performed to compare three QUSs (two heel ultrasounds: Achilles+ [GE-Lunar] and Sahara [Hologic]; the phalanges: ultrasound DBM sonic 1200 [IGEA]) for determining by logistic regression nonvertebral fracture odds ratio (OR) in a sample of 7562 Swiss women, 75.3 +/- 3.1 years of age. The two heel QUSs measured the broadband ultrasound attenuation (BUA) and the speed of sound (SOS). In addition, Achilles+ calculated the stiffness index (SI) and the Sahara calculated the quantitative ultrasound index (QUI) from BUA and SOS. The DBM sonic 1200 measured the amplitude-dependent SOS (AD-SOS). RESULTS: Eighty-six women had a history of a traumatic hip fracture after the age of 50, 1594 had a history of forearm fracture, and 2016 had other nonvertebral fractures. No fracture history was reported by 3866 women. Discrimination for hip fracture was higher than for the other nonvertebral fractures. The two heel QUSs had a significantly higher discrimination power than the QUSs of the phalanges, with standardized ORs, adjusted for age and body mass index, ranging from 2.1 to 2.7 (95% CI = 1.6, 3.5) compared with 1.4 (95% CI = 1.1, 1.7) for the AD-SOS of DBM sonic 1200. CONCLUSION: This study showed a high association between heel QUS and hip fracture history in elderly Swiss women. This could justify integration of QUS among screening strategies for identifying elderly women at risk for osteoporotic fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current models of brain organization include multisensory interactions at early processing stages and within low-level, including primary, cortices. Embracing this model with regard to auditory-visual (AV) interactions in humans remains problematic. Controversy surrounds the application of an additive model to the analysis of event-related potentials (ERPs), and conventional ERP analysis methods have yielded discordant latencies of effects and permitted limited neurophysiologic interpretability. While hemodynamic imaging and transcranial magnetic stimulation studies provide general support for the above model, the precise timing, superadditive/subadditive directionality, topographic stability, and sources remain unresolved. We recorded ERPs in humans to attended, but task-irrelevant stimuli that did not require an overt motor response, thereby circumventing paradigmatic caveats. We applied novel ERP signal analysis methods to provide details concerning the likely bases of AV interactions. First, nonlinear interactions occur at 60-95 ms after stimulus and are the consequence of topographic, rather than pure strength, modulations in the ERP. AV stimuli engage distinct configurations of intracranial generators, rather than simply modulating the amplitude of unisensory responses. Second, source estimations (and statistical analyses thereof) identified primary visual, primary auditory, and posterior superior temporal regions as mediating these effects. Finally, scalar values of current densities in all of these regions exhibited functionally coupled, subadditive nonlinear effects, a pattern increasingly consistent with the mounting evidence in nonhuman primates. In these ways, we demonstrate how neurophysiologic bases of multisensory interactions can be noninvasively identified in humans, allowing for a synthesis across imaging methods on the one hand and species on the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of bone mineral density (BMD) for fracture discrimination may be improved by considering bone microarchitecture. Texture parameters such as trabecular bone score (TBS) or mean Hurst parameter (H) could help to find women who are at high risk of fracture in the non-osteoporotic group. The purpose of this study was to combine BMD and microarchitectural texture parameters (spine TBS and calcaneus H) for the detection of osteoporotic fractures. Two hundred and fifty five women had a lumbar spine (LS), total hip (TH), and femoral neck (FN) DXA. Additionally, texture analyses were performed with TBS on spine DXA and with H on calcaneus radiographs. Seventy-nine women had prevalent fragility fractures. The association with fracture was evaluated by multivariate logistic regressions. The diagnostic value of each parameter alone and together was evaluated by odds ratios (OR). The area under curve (AUC) of the receiver operating characteristics (ROC) were assessed in models including BMD, H, and TBS. Women were also classified above and under the lowest tertile of H or TBS according to their BMD status. Women with prevalent fracture were older and had lower TBS, H, LS-BMD, and TH-BMD than women without fracture. Age-adjusted ORs were 1.66, 1.70, and 1.93 for LS, FN, and TH-BMD, respectively. Both TBS and H remained significantly associated with fracture after adjustment for age and TH-BMD: OR 2.07 [1.43; 3.05] and 1.47 [1.04; 2.11], respectively. The addition of texture parameters in the multivariate models didn't show a significant improvement of the ROC-AUC. However, women with normal or osteopenic BMD in the lowest range of TBS or H had significantly more fractures than women above the TBS or the H threshold. We have shown the potential interest of texture parameters such as TBS and H in addition to BMD to discriminate patients with or without osteoporotic fractures. However, their clinical added values should be evaluated relative to other risk factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Responses to external stimuli are typically investigated by averaging peri-stimulus electroencephalography (EEG) epochs in order to derive event-related potentials (ERPs) across the electrode montage, under the assumption that signals that are related to the external stimulus are fixed in time across trials. We demonstrate the applicability of a single-trial model based on patterns of scalp topographies (De Lucia et al, 2007) that can be used for ERP analysis at the single-subject level. The model is able to classify new trials (or groups of trials) with minimal a priori hypotheses, using information derived from a training dataset. The features used for the classification (the topography of responses and their latency) can be neurophysiologically interpreted, because a difference in scalp topography indicates a different configuration of brain generators. An above chance classification accuracy on test datasets implicitly demonstrates the suitability of this model for EEG data. Methods: The data analyzed in this study were acquired from two separate visual evoked potential (VEP) experiments. The first entailed passive presentation of checkerboard stimuli to each of the four visual quadrants (hereafter, "Checkerboard Experiment") (Plomp et al, submitted). The second entailed active discrimination of novel versus repeated line drawings of common objects (hereafter, "Priming Experiment") (Murray et al, 2004). Four subjects per experiment were analyzed, using approx. 200 trials per experimental condition. These trials were randomly separated in training (90%) and testing (10%) datasets in 10 independent shuffles. In order to perform the ERP analysis we estimated the statistical distribution of voltage topographies by a Mixture of Gaussians (MofGs), which reduces our original dataset to a small number of representative voltage topographies. We then evaluated statistically the degree of presence of these template maps across trials and whether and when this was different across experimental conditions. Based on these differences, single-trials or sets of a few single-trials were classified as belonging to one or the other experimental condition. Classification performance was assessed using the Receiver Operating Characteristic (ROC) curve. Results: For the Checkerboard Experiment contrasts entailed left vs. right visual field presentations for upper and lower quadrants, separately. The average posterior probabilities, indicating the presence of the computed template maps in time and across trials revealed significant differences starting at ~60-70 ms post-stimulus. The average ROC curve area across all four subjects was 0.80 and 0.85 for upper and lower quadrants, respectively and was in all cases significantly higher than chance (unpaired t-test, p<0.0001). In the Priming Experiment, we contrasted initial versus repeated presentations of visual object stimuli. Their posterior probabilities revealed significant differences, which started at 250ms post-stimulus onset. The classification accuracy rates with single-trial test data were at chance level. We therefore considered sub-averages based on five single trials. We found that for three out of four subjects' classification rates were significantly above chance level (unpaired t-test, p<0.0001). Conclusions: The main advantage of the present approach is that it is based on topographic features that are readily interpretable along neurophysiologic lines. As these maps were previously normalized by the overall strength of the field potential on the scalp, a change in their presence across trials and between conditions forcibly reflects a change in the underlying generator configurations. The temporal periods of statistical difference between conditions were estimated for each training dataset for ten shuffles of the data. Across the ten shuffles and in both experiments, we observed a high level of consistency in the temporal periods over which the two conditions differed. With this method we are able to analyze ERPs at the single-subject level providing a novel tool to compare normal electrophysiological responses versus single cases that cannot be considered part of any cohort of subjects. This aspect promises to have a strong impact on both basic and clinical research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of parvalbumin (PV), calretinin (CR), and calbindin (CB) immunoreactive neurons was studied with the help of an image analysis system (Vidas/Zeiss) in the primary visual area 17 and associative area 18 (Brodmann) of Alzheimer and control brains. In neither of these areas was there a significant difference between Alzheimer and control groups in the mean number of PV, CR, or CB immunoreactive neuronal profiles, counted in a cortical column going from pia to white matter. Significant differences in the mean densities (numbers per square millimeter of cortex) of PV, CR, and CB immunoreactive neuronal profiles were not observed either between groups or areas, but only between superficial, middle, and deep layers within areas 17 and 18. The optical density of the immunoreactive neuropil was also similar in Alzheimer and controls, correlating with the numerical density of immunoreactive profiles in superficial, middle, and deep layers. The frequency distribution of neuronal areas indicated significant differences between PV, CR, and CB immunoreactive neuronal profiles in both areas 17 and 18, with more large PV than CR and CB positive profiles. There were also significantly more small and less large PV and CR immunoreactive neuronal profiles in Alzheimer than in controls. Our data show that, although the brain pathology is moderate to severe, there is no prominent decrease of PV, CR and CB positive neurons in the visual cortex of Alzheimer brains, but only selective changes in neuronal perikarya.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT (FRENCH)Ce travail de thèse basé sur le système visuel chez les sujets sains et chez les patients schizophrènes, s'articule autour de trois articles scientifiques publiés ou en cours de publication. Ces articles traitent des sujets suivants : le premier article présente une nouvelle méthode de traitement des composantes physiques des stimuli (luminance et fréquence spatiale). Le second article montre, à l'aide d'analyses de données EEG, un déficit de la voie magnocellulaire dans le traitement visuel des illusions chez les patients schizophrènes. Ceci est démontré par l'absence de modulation de la composante PI chez les patients schizophrènes contrairement aux sujets sains. Cette absence est induite par des stimuli de type illusion Kanizsa de différentes excentricités. Finalement, le troisième article, également à l'aide de méthodes de neuroimagerie électrique (EEG), montre que le traitement des contours illusoires se trouve dans le complexe latéro-occipital (LOC), à l'aide d'illusion « misaligned gratings ». De plus il révèle que les activités démontrées précédemment dans les aires visuelles primaires sont dues à des inférences « top- down ».Afin de permettre la compréhension de ces trois articles, l'introduction de ce manuscrit présente les concepts essentiels. De plus des méthodes d'analyses de temps-fréquence sont présentées. L'introduction est divisée en quatre parties : la première présente le système visuel depuis les cellules retino-corticales aux deux voix du traitement de l'information en passant par les régions composant le système visuel. La deuxième partie présente la schizophrénie par son diagnostic, ces déficits de bas niveau de traitement des stimuli visuel et ces déficits cognitifs. La troisième partie présente le traitement des contours illusoires et les trois modèles utilisés dans le dernier article. Finalement, les méthodes de traitement des données EEG seront explicitées, y compris les méthodes de temps-fréquences.Les résultats des trois articles sont présentés dans le chapitre éponyme (du même nom). De plus ce chapitre comprendra les résultats obtenus à l'aide des méthodes de temps-fréquenceFinalement, la discussion sera orientée selon trois axes : les méthodes de temps-fréquence ainsi qu'une proposition de traitement de ces données par une méthode statistique indépendante de la référence. La discussion du premier article en montrera la qualité du traitement de ces stimuli. La discussion des deux articles neurophysiologiques, proposera de nouvelles d'expériences afin d'affiner les résultats actuels sur les déficits des schizophrènes. Ceci pourrait permettre d'établir un marqueur biologique fiable de la schizophrénie.ABSTRACT (ENGLISH)This thesis focuses on the visual system in healthy subjects and schizophrenic patients. To address this research, advanced methods of analysis of electroencephalographic (EEG) data were used and developed. This manuscript is comprised of three scientific articles. The first article showed a novel method to control the physical features of visual stimuli (luminance and spatial frequencies). The second article showed, using electrical neuroimaging of EEG, a deficit in spatial processing associated with the dorsal pathway in chronic schizophrenic patients. This deficit was elicited by an absent modulation of the PI component in terms of response strength and topography as well as source estimations. This deficit was orthogonal to the preserved ability to process Kanizsa-type illusory contours. Finally, the third article resolved ongoing debates concerning the neural mechanism mediating illusory contour sensitivity by using electrical neuroimaging to show that the first differentiation of illusory contour presence vs. absence is localized within the lateral occipital complex. This effect was subsequent to modulations due to the orientation of misaligned grating stimuli. Collectively, these results support a model where effects in V1/V2 are mediated by "top-down" modulation from the LOC.To understand these three articles, the Introduction of this thesis presents the major concepts used in these articles. Additionally, a section is devoted to time-frequency analysis methods not presented in the articles themselves. The introduction is divided in four parts. The first part presents three aspects of the visual system: cellular, regional, and its functional interactions. The second part presents an overview of schizophrenia and its sensoiy-cognitive deficits. The third part presents an overview of illusory contour processing and the three models examined in the third article. Finally, advanced analysis methods for EEG are presented, including time- frequency methodology.The Introduction is followed by a synopsis of the main results in the articles as well as those obtained from the time-frequency analyses.Finally, the Discussion chapter is divided along three axes. The first axis discusses the time frequency analysis and proposes a novel statistical approach that is independent of the reference. The second axis contextualizes the first article and discusses the quality of the stimulus control and direction for further improvements. Finally, both neurophysiologic articles are contextualized by proposing future experiments and hypotheses that may serve to improve our understanding of schizophrenia on the one hand and visual functions more generally.