103 resultados para tree communities
Resumo:
Aim Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location Europe. Methods We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.
Resumo:
The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) `oxidation zone' characterized by low-pH (2.5-4), a `neutralization zone' (70-80 to 300-400 cm) and an unaltered `primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (10(9) g(-1) dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium-like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment.
Resumo:
Experimental research has identified many putative agents of amphibian decline, yet the population-level consequences of these agents remain unknown, owing to lack of information on compensatory density dependence in natural populations. Here, we investigate the relative importance of intrinsic (density-dependent) and extrinsic (climatic) factors impacting the dynamics of a tree frog (Hyla arborea) population over 22 years. A combination of log-linear density dependence and rainfall (with a 2-year time lag corresponding to development time) explain 75% of the variance in the rate of increase. Such fluctuations around a variable return point might be responsible for the seemingly erratic demography and disequilibrium dynamics of many amphibian populations.
Resumo:
1. Costs of reproduction lie at the core of basic ecological and evolutionary theories, and their existence is commonly invoked to explain adaptive processes. Despite their sheer importance, empirical evidence for the existence and quantification of costs of reproduction in tree species comes mostly from correlational studies, while more comprehensive approaches remain missing. Manipulative experiments are a preferred approach to study cost of reproduction, as they allow controlling for otherwise inherent confounding factors like size or genetic background. 2. Here, we conducted a manipulative experiment in a Pinus halepensis common garden, removing developing cones from a group of trees and comparing growth and reproduction after treatment with a control group. We also estimated phenotypic and genetic correlations between reproductive and vegetative traits. 3. Manipulated trees grew slightly more than control trees just after treatment, with just a transient, marginally non-significant difference. By contrast, larger differences were observed for the number of female cones initiated 1 year after treatment, with an increase of 70% more cones in the manipulated group. Phenotypic and genetic correlations showed that smaller trees invested a higher proportion of their resources in reproduction, compared with larger trees, which could be interpreted as an indirect evidence for costs of reproduction. 4. Synthesis. This research showed a high impact of current reproduction on reproductive potential, even when not significant on vegetative growth. This has strong implications for how we understand adaptive strategies in forest trees and should encourage further interest on their still poorly known reproductive life-history traits.
Resumo:
Assessing in wild populations how fitness is impacted by inbreeding and genetic drift is a major goal for conservation biology. An approach to measure the detrimental effects of inbreeding on fitness is to estimate correlations between molecular variation and phenotypic performances within and among populations. Our study investigated the effect of individual multilocus heterozygosity on body size, body condition and reproductive investment of males (that is, chorus attendance) and females (that is, clutch mass and egg size) in both small fragmented and large non-fragmented populations of European tree frog (Hyla arborea). Because adult size and/or condition and reproductive investment are usually related, genetic erosion may have detrimental effects directly on reproductive investment, and also on individual body size and condition that in turn may affect reproductive investment. We confirmed that the reproductive investment was highly size-dependent for both sexes. Larger females invested more in offspring production, and larger males attended the chorus in the pond more often. Our results did not provide evidence for a decline in body size, condition and reproductive effort with decreased multilocus heterozygosity both within and among populations. We showed that the lack of heterozygosity-fitness correlations within populations probably resulted from low inbreeding levels (inferior to ca. 20% full-sib mating rate), even in the small fragmented populations. The detrimental effects of fixation load were either low in adults or hidden by environmental variation among populations. These findings will be useful to design specific management actions to improve population persistence.
Resumo:
Black cherry (Prunus serotina) is a tree from North America, where it is often used for economical purposes, whereas it is widespread and invasive in Europe. Plastid DNA variation was Wrst investigated in both its native and invasive ranges using microsatellite loci and sequences of three intergenic spacers (trnT-trnL, trnD-trnT and trnS-trnG). This analysis was focused on P. serotina var. serotina, with the inclusion of samples of closely related taxa. Length variation at a microsatellite locus (ccmp5) and a few sequence polymorphisms were identi- Wed among P. serotina samples. Four new primer pairs were then designed to speciWcally amplify variable regions and a combination of Wve markers was Wnally proposed for phylogeographic studies in P. serotina. These loci allow identiWcation of six chlorotypes in P. serotina var. serotina, which may be particularly useful to depict the maternal origins of European invasive populations
Resumo:
Sexual reproduction is nearly universal in eukaryotes and genetic determination of sex prevails among animals. The astonishing diversity of sex-determining systems and sex chromosomes is yet bewildering. Some taxonomic groups possess conserved and dimorphic sex chromosomes, involving a functional copy (e.g. mammals' X, birds' Z) and a degenerated copy (mammals' Y, birds' W), implying that sex- chromosomes are expected to decay. In contrast, others like amphibians, reptiles and fishes yet maintained undifferentiated sex chromosomes. Why such different evolutionary trajectories? In this thesis, we empirically test and characterize the main hypotheses proposed to prevent the genetic decay of sex chromosomes, namely occasional X-Y recombination and frequent sex-chromosome transitions, using the Palearctic radiation of Hyla tree frogs as a model system. We take a phylogeographic and phylogenetic approach to relate sex-chromosome recombination, differentiation, and transitions in a spatial and temporal framework. By reconstructing the recent evolutionary history of the widespread European tree frog H. arborea, we showed that sex chromosomes can recombine in males, preventing their differentiation, a situation that potentially evolves rapidly. At the scale of the entire radiation, X-Y recombination combines with frequent transitions to prevent sex-chromosome degeneration in Hyla: we traced several turnovers of sex-determining system within the last 10My. These rapid changes seem less random than usually assumed: we gathered evidences that one chromosome pair is a sex expert, carrying genes with key role in animal sex determination, and which probably specialized through frequent reuse as a sex chromosome in Hyla and other amphibians. Finally, we took advantage of secondary contact zones between closely-related Hyla lineages to evaluate the consequences of sex chromosome homomorphy on the genetics of speciation. In comparison with other systems, the evolution of sex chromosomes in Hyla emphasized the existence of consistent evolutionary patterns within the chaotic diversity of flexibility of cold-blooded vertebrates' sex-determining systems, and provides insights into the evolution of recombination. Beyond sex-chromosome evolution, this work also significantly contributed to speciation, phylogeography and applied conservation research. -- La reproduction sexuée est quasi-universelle chez les eucaryotes et le sexe est le plus souvent déterminé génétiquement au sein du règne animal. L'incroyable diversité des systèmes de reproduction et des chromosomes sexuels est particulièrement étonnante. Certains groupes taxonomiques possèdent des chromosomes sexuels dimorphiques et très conservés, avec une copie entièrement fonctionnelle (ex : le X des mammifères, le Z des oiseaux) et une copie dégénérée (ex : le Y des mammifères, le W des oiseaux), suggérant que les chromosomes sexuels sont voués à se détériorer. Cependant les chromosomes sexuels d'autres groupes tels que les amphibiens, les reptiles et les poissons sont pour la plupart indifférenciés. Comment expliquer des trajectoires évolutives si différentes? Au cours de cette thèse, nous avons étudié empiriquement les processus évolutifs pouvant maintenir les chromosomes sexuels intacts, à savoir la recombinaison X-Y occasionnel ainsi que les substitutions fréquentes de chromosomes sexuels, en utilisant les rainettes Paléarctiques du genre Hyla comme modèle d'étude. Nous avons adopté une approche phylogéographique et phylogénétique pour appréhender les événements de recombinaison, de différenciation et de transitions de chromosomes sexuels dans un contexte spatio-temporel. En retraçant l'histoire évolutive récente de la rainette verte H. arborea, nous avons mis en évidence que les chromosomes sexuels pouvaient recombiner chez les mâles, empêchant ainsi leur différenciation, et que ce processus avait le potentiel d'évoluer très rapidement. A l'échelle plus globale de la radiation, il apparait que les phénomènes de recombinaison X-Y soient également accompagnés de substitutions de chromosomes sexuels, et participent de concert au maintien de chromosomes sexuels intacts dans les populations: le système de détermination du sexe des rainettes a changé plusieurs fois au cours des 10 derniers millions d'années. Ces transitions fréquentes ne semblent pas aléatoires: nous avons identifié une paire de chromosomes qui présente des caractéristiques présageant d'une spécialisation dans le déterminisme du sexe (notamment car elle possède des gènes importants pour cette fonction), et qui a été réutilisée plusieurs fois comme tel chez les rainettes ainsi que d'autres amphibiens. Enfin, nous avons étudié l'hybridation entre différentes espèces dans leurs zones de contact, afin d'évaluer si l'absence de différenciation entre X et Y jouaient un rôle dans les processus génétiques de spéciation. Outre son intérêt pour la compréhension de l'évolution des chromosomes sexuels, ce travail contribue de manière significative à d'autres domaines de recherche tels que la spéciation, la phylogéographie, ainsi que la biologie de la conservation.
Resumo:
Compared to natural selection, domestication implies a dramatic change in traits linked to fitness. A number of traits conferring fitness in the wild might be detrimental under domestication, and domesticated species typically differ from their ancestors in a set of traits known as the domestication syndrome. Specifically, trade-offs between growth and reproduction are well established across the tree of life. According to allocation theory, selection for growth rate is expected to indirectly alter life-history reproductive traits, diverting resources from reproduction to growth. Here we tested this hypothesis by examining the genetic change and correlated responses of reproductive traits as a result of selection for timber yield in the tree Pinus pinaster. Phenotypic selection was carried out in a natural population, and progenies from selected trees were compared with those of control trees in a common garden experiment. According to expectations, we detected a genetic change in important life-history traits due to selection. Specifically, threshold sizes for reproduction were much higher and reproductive investment relative to size significantly lower in the selected progenies just after a single artificial selection event. Our study helps to define the domestication syndrome in exploited forest trees and shows that changes affecting developmental pathways are relevant in domestication processes of long-lived plants.
Resumo:
The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.
Resumo:
BACKGROUND: Hybridization between incipient species is expected to become progressively limited as their genetic divergence increases and reproductive isolation proceeds. Amphibian radiations and their secondary contact zones are useful models to infer the timeframes of speciation, but empirical data from natural systems remains extremely scarce. Here we follow this approach in the European radiation of tree frogs (Hyla arborea group). We investigated a natural hybrid zone between two lineages (Hyla arborea and Hyla orientalis) of Mio-Pliocene divergence (~5 My) for comparison with other hybrid systems from this group. RESULTS: We found concordant geographic distributions of nuclear and mitochondrial gene pools, and replicated narrow transitions (~30 km) across two independent transects, indicating an advanced state of reproductive isolation and potential local barriers to dispersal. This result parallels the situation between H. arborea and H. intermedia, which share the same amount of divergence with H. orientalis. In contrast, younger lineages show much stronger admixture at secondary contacts. CONCLUSIONS: Our findings corroborate the negative relationship between hybridizability and divergence time in European tree frogs, where 5 My are necessary to achieve almost complete reproductive isolation. Speciation seems to progress homogeneously in this radiation, and might thus be driven by gradual genome-wide changes rather than single speciation genes. However, the timescale differs greatly from that of other well-studied amphibians. General assumptions on the time necessary for speciation based on evidence from unrelated taxa may thus be unreliable. In contrast, comparative hybrid zone analyses within single radiations such as our case study are useful to appreciate the advance of speciation in space and time.
Resumo:
Quest for Orthologs (QfO) is a community effort with the goal to improve and benchmark orthology predictions. As quality assessment assumes prior knowledge on species phylogenies, we investigated the congruency between existing species trees by comparing the relationships of 147 QfO reference organisms from six Tree of Life (ToL)/species tree projects: The National Center for Biotechnology Information (NCBI) taxonomy, Opentree of Life, the sequenced species/species ToL, the 16S ribosomal RNA (rRNA) database, and trees published by Ciccarelli et al. (Ciccarelli FD, et al. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287) and by Huerta-Cepas et al. (Huerta-Cepas J, Marcet-Houben M, Gabaldon T. 2014. A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree Of Life. PeerJ PrePrints 2:223) Our study reveals that each species tree suggests a different phylogeny: 87 of the 146 (60%) possible splits of a dichotomous and rooted tree are congruent, while all other splits are incongruent in at least one of the species trees. Topological differences are observed not only at deep speciation events, but also within younger clades, such as Hominidae, Rodentia, Laurasiatheria, or rosids. The evolutionary relationships of 27 archaea and bacteria are highly inconsistent. By assessing 458,108 gene trees from 65 genomes, we show that consistent species topologies are more often supported by gene phylogenies than contradicting ones. The largest concordant species tree includes 77 of the QfO reference organisms at the most. Results are summarized in the form of a consensus ToL (http://swisstree.vital-it.ch/species_tree) that can serve different benchmarking purposes.
Resumo:
OBJECTIVE: It has been suggested that Schistosoma mansoni, which is endemic in African fishing communities, might increase susceptibility to human immunodeficiency virus (HIV) acquisition. If confirmed, this would be of great public health importance in these high HIV-risk communities. This study was undertaken to determine whether S. mansoni infection is a risk factor for HIV infection among the fishing communities of Lake Victoria, Uganda. We conducted a matched case-control study, nested within a prospective HIV incidence cohort, including 50 HIV seroconverters (cases) and 150 controls during 2009-2011. METHODS: S. mansoni infection prior to HIV seroconversion was determined by measuring serum circulating anodic antigen (CAA) in stored serum. HIV testing was carried out using the Determine rapid test and infection confirmed by enzyme-linked immunosorbent assays. RESULTS: About 49% of cases and 52% of controls had S. mansoni infection prior to HIV seroconversion (or at the time of a similar study visit, for controls): odds ratio, adjusting for ethnicity, religion, marital status, education, occupation, frequency of alcohol consumption in previous 3 months, number of sexual partners while drunk, duration of stay in the community, and history of schistosomiasis treatment in the past 2 years was 1.23 (95% CI 0.3-5.7) P = 0.79. S. mansoni infections were chronic (with little change in status between enrolment and HIV seroconversion), and there was no difference in median CAA concentration between cases and controls. CONCLUSIONS: These results do not support the hypothesis that S. mansoni infection promotes HIV acquisition.