158 resultados para spontaneous generation
Resumo:
Pseudomonas aeruginosa undergoes spontaneous mutation that impairs secretion of several extracellular enzymes during extended cultivation in vitro in rich media, as well as during long-term colonization of the cystic fibrosis lung. A frequent type of strong secretion deficiency is caused by inactivation of the quorum-sensing regulatory gene lasR. Here we analyzed a spontaneously emerging subline of strain PAO1 that exhibited moderate secretion deficiency and partial loss of quorum-sensing control. Using generalized transduction, we mapped the secretion defect to the vfr gene, which is known to control positively the expression of the lasR gene and type II secretion of several proteases. We confirmed this secretion defect by sequencing and complementation of the vfr mutation. In a reconstruction experiment conducted with a 1:1 mixture of wild-type strain PAO1 and a vfr mutant of PAO1, we observed that the vfr mutant had a selective advantage over the wild type after growth in static culture for 4 days. Under these conditions, spontaneous vfr emerged in a strain PAO1 population after four growth cycles, and these mutants accounted for more than 40% of the population after seven cycles. These results suggest that partial or complete loss of quorum sensing and secretion can be beneficial to P. aeruginosa under certain environmental conditions.
Resumo:
In a recent issue of Critical Care, den Hartog and colleagues show an association between spontaneous hypothermia, defined by an admission body temperature < 35°C, and poor outcome in patients with coma after cardiac arrest (CA) treated with therapeutic hypothermia (TH). Given that TH alters neurological prognostication, studies aiming to identify early markers of injury severity and outcome are welcome, since they may contribute overall to optimize the management of comatose CA patients. This study provides an important message to clinicians involved in post-resuscitation care and raises important questions that need to be taken into account in future studies.
Resumo:
Although increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.e., with phenotypic and functional characteristics similar to those of CTL specific for immunodominant viral Ags. Nonetheless, the eventual impact on tumor development in vaccinated melanoma donors remained limited. The comprehensive study of vaccinated patient metastasis shows that vaccine-driven tumor-infiltrating lymphocytes, although activated, still differed in functional capacities compared with blood counterparts. This coincided with a significant increase of FoxP3(+) regulatory T cell activity within the tumor. The consistent induction of effective tumor-specific CD8(+) T cells in the circulation with a vaccine represents a major achievement; however, clinical benefit may not be achieved unless the tumor environment can be altered to enable CD8(+) T cell efficacy.
Resumo:
1. SUMMARY Based on functional and homing properties, two subsets of memory T lymphocytes have been defined both in humans and in mice. Central memory T cells (TCM cells) express the lymph node homing receptors CD62L and CCR7, have poor effector function and proliferate efficiently upon antigenic stimulation. Effector memory T cells (TEM cells) do not express CCR7, are mostly CD62L negative and therefore are excluded from lymph nodes, but are able to migrate to sites of inflammation where they exert immediate effector function by producing inflammatory cytokines and cytotoxic mediators. In the present work we have addressed two questions that emerged since the definition of TCM and TEM cells. Firstly, what are the priming conditions for generation of TCM and TEM and, secondly, what is the migratory capacity of TCM and TEM cells in inflammatory conditions. By using naive TCR-transgenic OT-I CD8+ T cells and OT-II CD4+ T cells and ovalbumin pulsed-mature dendritic cells (DCs) we set up an in vitro system in which the strength of T cell stimulation is controlled by varying the ratio of T cells and DCs and the duration of DC-T cell interaction. Using this system we found that precursors of TCM and TEM cells are generated at different strength of stimulation and that T cells capable of persisting in vivo in the absence of antigen and of mounting recall responses is optimally induced by intermediate stimulatory strength. In addition, we found that lymph nodes draining sites of mature DC or adjuvant inoculation recruit CD8+ CD62L- CCR7- effector and TEM cells. CD8+ T cell recruitment in reactive lymph nodes requires CXCR3 expression on T cells and occurs through high endothelial venules (HEVs) in concert with HEV lurninal expression of the CXCR3 ligand CXCL9. In reactive lymph nodes, recruited T cells establish stable interactions with and kill antigen-bearing DCs, limiting the ability of these DCs to activate CD4+ and CD8+ T cells. Taken togther these data define conditions for the generation of TCM and TEM cells and define an inflammatory pathway of effector T cell migration in lymph nodes. The inducible recruitment of blood-borne effector and TEM CD8+ cells to lymph nodes may represent a mechanism for terminating primary and limiting secondary immune responses.
Resumo:
The protease activity of the paracaspase Malt1 has recently gained interest as a drug target for immunomodulation and the treatment of diffuse large B-cell lymphomas. To address the consequences of Malt1 protease inactivation on the immune response in vivo, we generated knock-in mice expressing a catalytically inactive C472A mutant of Malt1 that conserves its scaffold function. Like Malt1-deficient mice, knock-in mice had strong defects in the activation of lymphocytes, NK and dendritic cells, and the development of B1 and marginal zone B cells and were completely protected against the induction of autoimmune encephalomyelitis. Malt1 inactivation also protected the mice from experimental induction of colitis. However, Malt1 knock-in mice but not Malt1-deficient mice spontaneously developed signs of autoimmune gastritis that correlated with an absence of Treg cells, an accumulation of T cells with an activated phenotype and high serum levels of IgE and IgG1. Thus, removal of the enzymatic activity of Malt1 efficiently dampens the immune response, but favors autoimmunity through impaired Treg development, which could be relevant for therapeutic Malt1-targeting strategies.
Resumo:
Education and diagnostic tests capable of early detection represent our most effective means of preventing transmission of human immunodeficiency virus (HIV). The importance of early detection is underlined by studies demonstrating increased life expectancy following early initiation of antiviral treatment. The Elecsys(®) HIV combi PT assay is a fourth-generation antigen-antibody combination assay developed to allow earlier detection of seroconversion, and to have increased sensitivity and improved specificity. We aimed to determine how early the assay could detect infection compared with existing assays; whether all HIV variants could be detected; and the assay's specificity using samples from blood donors, routine specimens, and patients with potential cross-reacting factors. Samples were identified as positive by the Elecsys(®) assay 4.9 days after a positive polymerase chain reaction result (as determined by the panel supplier), which was earlier than the 5.3-7.1 days observed with comparators. The analytical sensitivity of the Elecsys(®) HIV combi PT assay for the HIV-1 p24 antigen was 1.05 IU/mL, which compares favorably with the comparator assays. In addition, the Elecsys(®) assay identified all screened HIV subtypes and displayed greater sensitivity to HIV-2 homologous antigen and antibodies to HIV-1 E and O and HIV-2 than the other assays. Overall, the specificity of the Elecsys(®) assay was 99.88 % using samples from blood donors and 99.81 % when analyzing unselected samples. Potential cross-reacting factors did not interfere with assay performance. The Elecsys(®) HIV combi PT assay is a sensitive and specific assay that has been granted the CE mark according to Directive 2009/886/EC.
Resumo:
BACKGROUND: Western Palearctic tree frogs (Hyla arborea group) represent a strong potential for evolutionary and conservation genetic research, so far underexploited due to limited molecular resources. New microsatellite markers have recently been developed for Hyla arborea, with high cross-species utility across the entire circum-Mediterranean radiation. Here we conduct sibship analyses to map available markers for use in future population genetic applications. FINDINGS: We characterized eight linkage groups, including one sex-linked, all showing drastically reduced recombination in males compared to females, as previously documented in this species. Mapping of the new 15 markers to the ~200 My diverged Xenopus tropicalis genome suggests a generally conserved synteny with only one confirmed major chromosome rearrangement. CONCLUSIONS: The new microsatellites are representative of several chromosomes of H. arborea that are likely to be conserved across closely-related species. Our linkage map provides an important resource for genetic research in European Hylids, notably for studies of speciation, genome evolution and conservation.
Resumo:
Acute infection with the hepatitis C virus (HCV) induces a wide range of innate and adaptive immune responses. A total of 20-50% of acutely HCV-infected individuals permanently control the virus, referred to as 'spontaneous hepatitis C clearance', while the infection progresses to chronic hepatitis C in the majority of cases. Numerous studies have examined host genetic determinants of hepatitis C infection outcome and revealed the influence of genetic polymorphisms of human leukocyte antigens, killer immunoglobulin-like receptors, chemokines, interleukins and interferon-stimulated genes on spontaneous hepatitis C clearance. However, most genetic associations were not confirmed in independent cohorts, revealed opposing results in diverse populations or were limited by varying definitions of hepatitis C outcomes or small sample size. Coordinated efforts are needed in the search for key genetic determinants of spontaneous hepatitis C clearance that include well-conducted candidate genetic and genome-wide association studies, direct sequencing and follow-up functional studies.
Resumo:
Age-related changes in lumbar vertebral microarchitecture are evaluated, as assessed by trabecular bone score (TBS), in a cohort of 5,942 French women. The magnitude of TBS decline between 45 and 85 years of age is piecewise linear in the spine and averaged 14.5 %. TBS decline rate increases after 65 years by 50 %. INTRODUCTION: This study aimed to evaluate age-related changes in lumbar vertebral microarchitecture, as assessed by TBS, in a cohort of French women aged 45-85 years. METHODS: An all-comers cohort of French Caucasian women was selected from two clinical centers. Data obtained from these centers were cross-calibrated for TBS and bone mineral density (BMD). BMD and TBS were evaluated at L1-L4 and for all lumbar vertebrae combined using GE-Lunar Prodigy densitometer images. Weight, height, and body mass index (BMI) also were determined. To validate our all-comers cohort, the BMD normative data of our cohort and French Prodigy data were compared. RESULTS: A cohort of 5,942 French women aged 45 to 85 years was created. Dual-energy X-ray absorptiometry normative data obtained for BMD from this cohort were not significantly different from French prodigy normative data (p = 0.15). TBS values at L1-L4 were poorly correlated with BMI (r = -0.17) and weight (r = -0.14) and not correlated with height. TBS values obtained for all lumbar vertebra combined (L1, L2, L3, L4) decreased with age. The magnitude of TBS decline at L1-L4 between 45 and 85 years of age was piecewise linear in the spine and averaged 14.5 %, but this rate increased after 65 years by 50 %. Similar results were obtained for other region of interest in the lumbar spine. As opposed to BMD, TBS was not affected by spinal osteoarthrosis. CONCLUSION: The age-specific reference curve for TBS generated here could therefore be used to help clinicians to improve osteoporosis patient management and to monitor microarchitectural changes related to treatment or other diseases in routine clinical practice.
Resumo:
We have analyzed the presentation of human histocompatability leukocyte antigen-A*0201-associated tumor peptide antigen MAGE-3271-279 by melanoma cells. We show that specific cytotoxic T lymphocyte (CTL)-recognizing cells transfected with a minigene encoding the preprocessed fragment MAGE-3271-279 failed to recognize cells expressing the full length MAGE-3 protein. Digestion of synthetic peptides extended at the NH2 or COOH terminus of MAGE-3271-279 with purified human proteasome revealed that the generation of the COOH terminus of the antigenic peptide was impaired. Surprisingly, addition of lactacystin to purified proteasome, though partially inhibitory, resulted in the generation of the antigenic peptide. Furthermore, treatment of melanoma cells expressing the MAGE-3 protein with lactacystin resulted in efficient lysis by MAGE-3271-279-specific CTL. We therefore postulate that the generation of antigenic peptides by the proteasome in cells can be modulated by the selective inhibition of certain of its enzymaticactivities.
Resumo:
In Pseudomonasfluorescens strain CHAO, the response regulator gene gacA controls expression of extracellular enzymes and antifungal secondary metabolites, which are important for this strain's biocontrol activity in the plant rhizosphere. Two Tn5 insertion mutants of strain CHA0 that had the same pleiotropic phenotype as gacA mutants were complemented by the gacS sensor kinase gene of P. syringae pv. syringae as well as that of P. fluorescens strain Pf-5, indicating that both transposon insertions had occurred in the gacS gene of strain CHA0. This conclusion was supported by Southern hybridisation using a gacS probe from strain Pf-5. Overexpression of the wild-type gacA gene partially compensated for the gacS mutation, however, the overexpressed gacA gene was not stably maintained, suggesting that this is deleterious to the bacterium. Strain CHA0 grown to stationary phase in nutrient-rich liquid media for several days accumulated spontaneous pleiotropic mutants to levels representing 1.25% of the population; all mutants lacked key antifungal metabolites and extracellular protease. Half of 44 spontaneous mutants tested were complemented by gacS, the other half were restored by gacA. Independent point and deletion mutations arose at different sites in the gacA gene. In competition experiments with mixtures of the wild type and a gacA mutant incubated in nutrient-rich broth, the mutant population temporarily increased as the wild type decreased. In conclusion, loss of gacA function can confer a selective advantage on strain CHA0 under laboratory conditions.
Resumo:
In a recent vaccination trial assessing the immunogenicity of an NY-ESO-1 (ESO) recombinant protein administered with Montanide and CpG, we have obtained evidence that this vaccine induces specific cytolytic T lymphocytes (CTL) in half of the patients. Most vaccine-induced CTLs were directed against epitopes located in the central part of the protein, between amino acids 81 and 110. This immunodominant region, however, is distinct from another ESO CTL region, 157-165, that is a frequent target of spontaneous CTL responses in A2+ patients bearing ESO tumors. In this study, we have investigated the CTL responses to ESO 157-165 in A2+ patients vaccinated with the recombinant protein. Our data indicate that after vaccination with the protein, CTL responses to ESO 157-165 are induced in some, but not all, A2+ patients. ESO 157-165-specific CTLs induced by vaccination with the ESO protein were functionally heterogeneous in terms of tumor recognition and often displayed decreased tumor reactivity as compared with ESO 157-165-specific CTLs isolated from patients with spontaneous immune responses to ESO. Remarkably, protein-induced CTLs used T-cell receptors similar to those previously isolated from patients vaccinated with synthetic ESO peptides (Vbeta4.1) and distinct from those used by highly tumor-reactive CTLs isolated from patients with spontaneous immune responses (Vbeta1.1, Vbeta8.1, and Vbeta13.1). Together, these results demonstrate that vaccination with the ESO protein elicits a repertoire of ESO 157-165-specific CTLs bearing T-cell receptors that are structurally distinct from those of CTLs found in spontaneous immune responses to the antigen and that are heterogeneous in terms of tumor reactivity, being often poorly tumor reactive.