79 resultados para spatio-temporal distribution


Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Analyses of brain responses to external stimuli are typically based on the means computed across conditions. However in many cognitive and clinical applications, taking into account their variability across trials has turned out to be statistically more sensitive than comparing their means. NEW METHOD: In this study we present a novel implementation of a single-trial topographic analysis (STTA) for discriminating auditory evoked potentials at predefined time-windows. This analysis has been previously introduced for extracting spatio-temporal features at the level of the whole neural response. Adapting the STTA on specific time windows is an essential step for comparing its performance to other time-window based algorithms. RESULTS: We analyzed responses to standard vs. deviant sounds and showed that the new implementation of the STTA gives above-chance decoding results in all subjects (in comparison to 7 out of 11 with the original method). In comatose patients, the improvement of the decoding performance was even more pronounced than in healthy controls and doubled the number of significant results. COMPARISON WITH EXISTING METHOD(S): We compared the results obtained with the new STTA to those based on a logistic regression in healthy controls and patients. We showed that the first of these two comparisons provided a better performance of the logistic regression; however only the new STTA provided significant results in comatose patients at group level. CONCLUSIONS: Our results provide quantitative evidence that a systematic investigation of the accuracy of established methods in normal and clinical population is an essential step for optimizing decoding performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although neuroimaging research has evidenced specific responses to visual food stimuli based on their nutritional quality (e.g., energy density, fat content), brain processes underlying portion size selection remain largely unexplored. We identified spatio-temporal brain dynamics in response to meal images varying in portion size during a task of ideal portion selection for prospective lunch intake and expected satiety. Brain responses to meal portions judged by the participants as 'too small', 'ideal' and 'too big' were measured by means of electro-encephalographic (EEG) recordings in 21 normal-weight women. During an early stage of meal viewing (105-145ms), data showed an incremental increase of the head-surface global electric field strength (quantified via global field power; GFP) as portion judgments ranged from 'too small' to 'too big'. Estimations of neural source activity revealed that brain regions underlying this effect were located in the insula, middle frontal gyrus and middle temporal gyrus, and are similar to those reported in previous studies investigating responses to changes in food nutritional content. In contrast, during a later stage (230-270ms), GFP was maximal for the 'ideal' relative to the 'non-ideal' portion sizes. Greater neural source activity to 'ideal' vs. 'non-ideal' portion sizes was observed in the inferior parietal lobule, superior temporal gyrus and mid-posterior cingulate gyrus. Collectively, our results provide evidence that several brain regions involved in attention and adaptive behavior track 'ideal' meal portion sizes as early as 230ms during visual encounter. That is, responses do not show an increase paralleling the amount of food viewed (and, in extension, the amount of reward), but are shaped by regulatory mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analysed the relationship between changes in land cover patterns and the Eurasian otter occurrence over the course of about 20 years (1985-2006) using multi-temporal Species Distribution Models (SDMs). The study area includes five river catchments covering most of the otter's Italian range. Land cover and topographic data were used as proxies of the ecological requirements of the otter within a 300-m buffer around river courses. We used species presence, pseudo-absence data, and environmental predictors to build past (1985) and current (2006) SDMs by applying an ensemble procedure through the BIOMOD modelling package. The performance of each model was evaluated by measuring the area under the curve (AUC) of the receiver-operating characteristic (ROC). Multi-temporal analyses of species distribution and land cover maps were performed by comparing the maps produced for 1985 and 2006. The ensemble procedure provided a good overall modelling accuracy, revealing that elevation and slope affected the otter's distribution in the past; in contrast, land cover predictors, such as cultivations and forests, were more important in the present period. During the transition period, 20.5% of the area became suitable, with 76% of the new otter presence data being located in these newly available areas. The multi-temporal analysis suggested that the quality of otter habitat improved in the last 20 years owing to the expansion of forests and to the reduction of cultivated fields in riparian belts. The evidence presented here stresses the great potential of riverine habitat restoration and environmental management for the future expansion of the otter in Italy

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus giutinosa (L.) Gaertn. and Corylus avellana L) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AlCc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence-absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected.