139 resultados para sleep disturbances
Resumo:
The contribution of genes, environment and gene-environment interactions to sleep disorders is increasingly recognized. Well-documented familial and twin sleep disorder studies suggest an important influence of genetic factors. However, only few sleep disorders have an established genetic basis including four rare diseases that may result from a single gene mutation: fatal familial insomnia, familial advanced sleep-phase syndrome, chronic primary insomnia, and narcolepsy with cataplexy. However, most sleep disorders are complex in terms of their genetic susceptibility together with the variable expressivity of the phenotype even within a same family. Recent linkage, genome-wide and candidate gene association studies resulted in the identification of gene mutations, gene localizations, or evidence for susceptibility genes and/or loci in several sleep disorders. Molecular techniques including mainly genome-wide linkage and association studies are further required to identify the contribution of new genes. These identified susceptibility genetic determinants will provide clues to better understand pathogenesis of sleep disorders, to assess the risk for diseases and also to find new drug targets to treat and to prevent the underlying conditions. We reviewed here the role of genetic basis in most of key sleep disorders.
Resumo:
Humans spend one third of their life sleeping, then we could raise the basic question: Why do we sleep? Despite the fact that we still don't fully understand its function, we made much progress in understanding at different levels how sleep is regulated. One model suggests that sleep is regulated by two processes: a homeostatic process that tracks the need for sleep and by a circadian rhythm that determines the preferred time-of-day sleep occurs. At the molecular level circadian rhythms are a property of interlocking transcriptional regula-tors referred to as clock genes. The heterodimeric transcription factors BMAL1::CLOCK/NPAS2 drive the transcription of many target genes including the clock genes Cryptochome1 (Cry1), Cry2, Period1 (Per1), and Per2. The encoded CRY/PER proteins are transcriptional inhibitors of BMAL1::CLOCK/NPAS2 thereby providing negative feedback to their own transcription. These genes seem, however, also involved in sleep homeostasis because the brain expression of clock genes, es-pecially that of Per2, increase as a function of time-spent-awake and because mice lacking clock genes display altered sleep homeostasis. The aim of first part of my doctoral work has been to advance our understanding the link that exists between sleep homeostasis and circadian rhythms investigating a possible mechanism by which sleep deprivation could alter clock gene expression by quantifying DNA-binding of the core-clock genes BMAL1, CLOCK and NPAS2 to their target chromatin loci including the E-box enhancers of the Per2 promoter. We made use of chromatin immunoprecipitation (ChIP) and quantitative poly-merase chain reaction (qPCR) to show that DNA-binding of CLOCK and BMAL1 to their target genes changes as a function of time-of-day in both liver and cerebral cortex. We then performed a 6h sleep deprivation (SD) and observed a significant decrease in DNA-binding of CLOCK and BMAL1 to Dbp. This is consistent with a decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was similarly decreased following SD. However, SD has been previously shown to in-crease Per2 expression in the cortex which seems paradoxical. Our results demonstrate that sleep-wake history can affect the molecular clock machinery directly at the level of the chromatin thereby altering the cortical expression of Dbp and Per2, and likely other targets. However, the precise dy-namic relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive. The second aim of my doctoral work has been to perform an in depth characterization of cir-cadian rhythmicity, sleep architecture, analyze the response to SD in full null-Per2 knock-out (Per2-/-) mice, and Per1-/- mice, as well as their double knock-out offspring (Per1,2-/-) and littermate wildtype (Wt) mice. The techniques used include locomotor activity recording by passive infrared (PIR) sen-sors, EEG/EMG surgery, recording, and analysis, and cerebral cortex extraction and quantification of mRNA levels by qPCR. Under standard LD12:12 conditions, we found that wakefulness onset, as well as the time courses of clock gene expression in the brain and corticosterone plasma levels were ad-vanced by about 2h in Per2-/- mice compared to Wt mice. When released under constant dark condi-tions almost all Per2-/- mice (97%) became arrhythmic immediately. From these observations, we conclude that while Per2-/- mice seem to be able to anticipate dark onset, this does not result from a self-sustained circadian clock. Our results suggest instead that the earlier onset of activity results from a labile, not-self sustained 22h rhythm linked to light onset suggesting the existence of a light-driven rhythm. Analyses of sleep under LD12:12 conditions revealed that in both Per2-/- and Per1,2-/- mice the same sleep phenotypes are observed compared to Wt mice: increased NREM sleep frag-mentation and inability to adequately compensate the loss of NREM sleep. That suggests a possible role of PER2 in sleep consolidation and recovery.
Resumo:
Rest or sleep in all animal species constitutes a period of quiescence necessary for recovery from activity. Whether rest and activity observed in all organisms share a similar fundamental molecular basis with sleep and wakefulness in mammals has not yet been established. In addition and in contrast to the circadian system, strong evidence that sleep is regulated at the transcriptional level is lacking. Nevertheless, several studies indicate that single genesmay regulate some specific aspects of sleep. Efforts to better understand or confirm the role of known neurotransmission pathways in sleep-wake regulation using transgenic approaches resulted so far in only limited new insights. Recent gene expression profiling efforts in rats, mice, and fruit flies are promising and suggest that only a few gene categories are differentially regulated by behavioral state. How molecular analysis can help us to understand sleep is the focus of this chapter.
Resumo:
OBJECTIVE: Sleep disordered breathing with central apnea or hypopnea frequently occurs at high altitude and is thought to be caused by a decrease in blood CO(2) level. The aim of this study was to assess the effects of added respiratory dead space on sleep disordered breathing.¦METHODS: Full polysomnographies were performed on 12 unacclimatized swiss mountaineers (11 males, 1 female, mean age 39±12 y.o.) in Leh, Ladakh (3500m). In random order, half of the night was spent with a 500ml increase in dead space through a custom designed full face mask and the other half without it.¦RESULTS: Baseline data revealed two clearly distinct groups: one with severe sleep disordered breathing (n=5, AHI>30) and the other with moderate to no disordered breathing (n=7, AHI<30). DS markedly improved breathing in the first group (baseline vs DS): apnea hypopnea index (AHI) 70.3±25.8 vs 29.4±6.9 (p=0.013), oxygen desaturation index (ODI): 72.9±24.1/h vs 42.5±14.4 (p=0.031), whereas it had no significant effect in the second group or in the total population. Respiratory events were almost exclusively central apnea or hypopnea. Microarousal index, sleep efficiency, and sleep architecture remained unchanged with DS. A minor increase in mean PtcCO(2) (n=3) was observed with DS.¦CONCLUSION: A 500ml increase in dead space through a fitted mask may improve nocturnal breathing in mountaineers with severe altitude-induced sleep disordered breathing.
Resumo:
BACKGROUND: Positional therapy that prevents patients from sleeping supine has been used for many years to manage positional obstructive sleep apnea (OSA). However, patients' usage at home and the long term efficacy of this therapy have never been objectively assessed.¦METHODS: Sixteen patients with positional OSA who refused or could not tolerate continuous positive airway pressure (CPAP) were enrolled after a test night study (T0) to test the efficacy of the positional therapy device. The patients who had a successful test night were instructed to use the device every night for three months. Nightly usage was monitored by an actigraphic recorder placed inside the positional device. A follow-up night study (T3) was performed after three months of positional therapy.¦RESULTS: Patients used the device on average 73.7 ± 29.3% (mean ± SD) of the nights for 8.0 ± 2.0 h/night. 10/16 patients used the device more than 80% of the nights. Compared to the baseline (diagnostic) night, mean apnea-hypopnea index (AHI) decreased from 26.7 ± 17.5 to 6.0 ± 3.4 with the positional device (p<0.0001) during T0 night. Oxygen desaturation (3%) index also fell from 18.4 ± 11.1 to 7.1 ± 5.7 (p = 0.001). Time spent supine fell from 42.8 ± 26.2% to 5.8 ± 7.2% (p < 0.0001). At three months (T3), the benefits persisted with no difference in AHI (p = 0.58) or in time spent supine (p = 0.98) compared to T0 night. The Epworth sleepiness scale showed a significant decrease from 9.4 ± 4.5 to 6.6 ± 4.7 (p = 0.02) after three months.¦CONCLUSIONS: Selected patients with positional OSA can be effectively treated by a positional therapy with an objective compliance of 73.7% of the nights and a persistent efficacy after three months.
Resumo:
Introduction La dystrophie musculaire de Duchenne (DMD) est une myopathie progressive liée au chromosome X qui atteint environ un garçon sur 3500. Des troubles du sommeil (TDS) sont fréquemment rapportés par ces patients Les études effectuées à ce jour se sont essentiellement concentrées sur les troubles respiratoires liés au sommeil. Les TDS débutent toutefois fréquemment avant l'installation d'un trouble ventilatoire nocturne et de nombreux autres facteurs peuvent en être la cause. Objectif L'objectif de cette étude est d'évaluer la fréquence des TDS chez les garçons avec une DMD et d'en identifier les facteurs de risque. Méthode II s'agit d'une étude transversale effectuée par questionnaire postal adressé aux parents de tout garçon âgé de 4-18 ans avec une DMD, suivi dans deux centres tertiaires de réhabilitation pédiatrique (Lausanne et Dublin). Les TDS sont évalués à l'aide de la 'Sleep Disturbance Scale for Children' (SDSC), validée sur 1157 enfants sains. Elle permet d'obtenir un score total et des scores pour six facteurs représentant les TDS les plus fréquents (troubles de l'endormissement et du maintien du sommeil (TEMS), éveil nocturne-cauchemars, transition veille-sommeil, somnolence diurne excessive, troubles respiratoires associés au sommeil (TRS), hyperhidrose du sommeil). Un T- score supérieur à 70 (>2DS) est considéré comme pathologique. Les associations potentielles entre des scores pathologiques et des facteurs individuels (âge, mobilité diurne et nocturne, douleur), thérapeutiques (orthèses nocturnes, ventilation non-invasive, médication) et environnementaux (facteurs socio-familiaux) sont évaluées à l'aide d'analyses univariées (χ2) et de régressions logistiques ascendantes. Résultats Seize garçons sur 63, soit 25.4%, présentent un score total pathologique en comparaison au 3% attendus dans la population générale. Les TEMS (29.7%), les TRS (15.6%) et l'hyperhidrose du sommeil (14.3%) sont les TDS les plus prévalent. Le besoin d'être mobilisé la nuit par un tiers (OR=9.4; 95%CI: 2.2-40.7; p=0.003) et être l'enfant d'une famille monoparentale (OR=7.2; 95%CI: 1.5-35.1; p=0.015) sont des facteurs de risque indépendants pour un score total pathologique. Le besoin d'être mobilisé la nuit par un tiers (OR=18.0; 95%CI: 2.9¬110.6; p=0.002), le traitement par corticostéroïdes (OR=7.7; 95%CI: 1.4-44.0; p-0.021) et être l'enfant d'une famille monoparentale (OR=7.0; 95%CI: 1.3-38.4; p=0.025) sont des facteurs de risque indépendants pour un TEMS. Discussion Cette étude montre une prévalence élevée des TDS chez les garçons avec une DMD (25% contre 3% attendus dans la population générale). Le besoin d'être mobilisé la nuit par un tiers est identifié comme un facteur de risque important pour un score total pathologique et un TEMS. Il reflète vraisemblablement un degré d'atteinte motrice tel qu'il limite les mouvements spontanés et les adaptations posturales du sommeil, ayant pour conséquence une diminution importante de la qualité du sommeil. Les enfants vivant dans un foyer monoparental présentent plus fréquemment un score total pathologique et des TEMS, possiblement en lien avec un stress psychologique plus important dans ces familles. Le traitement par corticostéroïdes est identifié comme facteur de risque pour un TEMS. Une adaptation du schéma ou du dosage permet généralement de limiter cet effet secondaire. Si nécessaire, un traitement par Mélatonine peut être instauré. Aucune association n'a pu être mise en évidence entre les facteurs analysés et les TRS, possiblement en raison du petit nombre de garçons ayant rapporté de tels symptômes et du fait que certains symptômes d'hypoventilation nocturne ne sont pas évalués par la SDSC. Par ailleurs, la valeur prédictive de l'anamnèse, comme celle des fonctions pulmonaires diurnes, est connue pour être limitée, raison pour laquelle une oxy-capnométrie est effectuée de routine en dessous d'une capacité vitale forcée de 50%. Elle permet, si nécessaire, l'instauration précoce d'une ventilation non-invasive, limitant ainsi vraisemblablement l'impact de ('hypoventilation nocturne sur la qualité du sommeil dans notre population. Plusieurs limitations sont à évoquer. Le petit nombre de patients ne permet pas d'exclure d'autres associations potentielles. La nature transversale de l'étude augmente le risque de causalité inverse. Cette étude n'inclut pas de mesure quantitative du sommeil. Les questionnaires adressés aux parents ont toutefois pu être démontrés comme fiables hormis pour les TRS. Un biais de non-réponse ne peut pas être totalement exclu, bien que le taux de réponse soit élevé (86,5%) et qu'il n'y ait pas de différence significative entre les populations de répondeurs et non-répondeurs. Conclusion La prévalence des TDS est élevée chez les garçons avec une DMD et leurs causes sont multiples. Les facteurs de risques sont physiques (immobilité nocturne), pharmacologiques (corticothérapie) et environnementaux (famille monoparentale). Compte tenu de son impact sur la qualité de vie, l'évaluation du sommeil doit être systématique en consultation et ne pas se limiter aux seuls troubles ventilatoires nocturnes.
Resumo:
Disturbances affect metapopulations directly through reductions in population size and indirectly through habitat modification. We consider how metapopulation persistence is affected by different disturbance regimes and the way in which disturbances spread, when metapopulations are compact or elongated, using a stochastic spatially explicit model which includes metapopulation and habitat dynamics. We discover that the risk of population extinction is larger for spatially aggregated disturbances than for spatially random disturbances. By changing the spatial configuration of the patches in the system--leading to different proportions of edge and interior patches--we demonstrate that the probability of metapopulation extinction is smaller when the metapopulation is more compact. Both of these results become more pronounced when colonization connectivity decreases. Our results have important management implication as edge patches, which are invariably considered to be less important, may play an important role as disturbance refugia.
Resumo:
The complexity of sleep-wake regulation, in addition to the many environmental influences, includes genetic predisposing factors, which begin to be discovered. Most of the current progress in the study of sleep genetics comes from animal models (dogs, mice, and drosophila). Multiple approaches using both animal models and different genetic techniques are needed to follow the segregation and ultimately to identify 'sleep genes' and molecular bases of sleep disorders. Recent progress in molecular genetics and the development of detailed human genome map have already led to the identification of genetic factors in several complex disorders. Only a few genes are known for which a mutation causes a sleep disorder. However, single gene disorders are rare and most common disorders are complex in terms of their genetic susceptibility, environmental factors, gene-gene, and gene-environment interactions. We review here the current progress in the genetics of normal and pathological sleep and suggest a few future perspectives.
Resumo:
To test whether mental activities collected from non-REM sleep are influenced by REM sleep, we suppressed REM sleep using clomipramine 50mg (an antidepressant) or placebo in the evening, in a double blind cross-over design, in 11 healthy young men. Subjects were awakened every hour and asked about their mental activity. The marked (81%, range 39-98%) REM-sleep suppression induced by clomipramine did not substantially affect any aspects of dream recall (report length, complexity, bizarreness, pleasantness and self-perception of dream or thought-like mentation). Since long, complex and bizarre dreams persist even after suppressing REM sleep either partially or totally, it suggests that the generation of mental activity during sleep is independent of sleep stage.
Resumo:
The mammalian brain oscillates through three distinct global activity states: wakefulness, non-rapid eye movement (NREM) sleep and REM sleep. The regulation and function of these 'vigilance' or 'behavioural' states can be investigated over a broad range of temporal and spatial scales and at different levels of functional organization, i.e. from gene expression to memory, in single neurons, cortical columns or the whole brain and organism. We summarize some basic questions that have arisen from recent approaches in the quest for the functions of sleep. Whereas traditionally sleep was viewed to be regulated through top-down control mechanisms, recent approaches have emphasized that sleep is emerging locally and regulated in a use-dependent (homeostatic) manner. Traditional markers of sleep homeostasis, such as the electroencephalogram slow-wave activity, have been linked to changes in connectivity and plasticity in local neuronal networks. Thus waking experience-induced local network changes may be sensed by the sleep homeostatic process and used to mediate sleep-dependent events, benefiting network stabilization and memory consolidation. Although many questions remain unanswered, the available data suggest that sleep function will best be understood by an analysis which integrates sleep's many functional levels with its local homeostatic regulation.
Resumo:
The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.
NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions.
Resumo:
Because the transcription factor neuronal Per-Arnt-Sim-type signal-sensor protein-domain protein 2 (NPAS2) acts both as a sensor and an effector of intracellular energy balance, and because sleep is thought to correct an energy imbalance incurred during waking, we examined NPAS2's role in sleep homeostasis using npas2 knockout (npas2-/-) mice. We found that, under conditions of increased sleep need, i.e., at the end of the active period or after sleep deprivation (SD), NPAS2 allows for sleep to occur at times when mice are normally awake. Lack of npas2 affected electroencephalogram activity of thalamocortical origin; during non-rapid eye movement sleep (NREMS), activity in the spindle range (10-15 Hz) was reduced, and within the delta range (1-4 Hz), activity shifted toward faster frequencies. In addition, the increase in the cortical expression of the NPAS2 target gene period2 (per2) after SD was attenuated in npas2-/- mice. This implies that NPAS2 importantly contributes to the previously documented wake-dependent increase in cortical per2 expression. The data also revealed numerous sex differences in sleep; in females, sleep need accumulated at a slower rate, and REMS loss was not recovered after SD. In contrast, the rebound in NREMS time after SD was compromised only in npas2-/- males. We conclude that NPAS2 plays a role in sleep homeostasis, most likely at the level of the thalamus and cortex, where NPAS2 is abundantly expressed.