97 resultados para simultaneous inference
Resumo:
An assay for the simultaneous analysis of pharmaceutical compounds and their metabolites from micro-whole blood samples (i.e. 5 microL) was developed using an on-line dried blood spot (on-line DBS) device coupled with hydrophilic interaction/reversed-phase (HILIC/RP) LC/MS/MS. Filter paper is directly integrated to the LC device using a homemade inox desorption cell. Without any sample pretreatment, analytes are desorbed from the paper towards an automated system of valves linking a zwitterionic-HILIC column to an RP C18 column. In the same run, the polar fraction is separated by the zwitterionic-HILIC column while the non-polar fraction is eluted on the RP C18. Both fractions are detected by IT-MS operating in full scan mode for the survey scan and in product ion mode for the dependant scan using an ESI source. The procedure was evaluated by the simultaneous qualitative analysis of four probes and their relative phase I and II metabolites spiked in whole blood. In addition, the method was successfully applied to the in vivo monitoring of buprenorphine metabolism after the administration of an intraperitoneal injection of 30 mg/kg on adult female Wistar rat.
Resumo:
A gas chromatography-mass spectrometry method is presented which allows the simultaneous determination of the plasma concentrations of the selective serotonin reuptake inhibitors citalopram, paroxetine, sertraline, and their pharmacologically active N-demethylated metabolites (desmethylcitalopram, didesmethylcitalopram, and desmethylsertraline) after derivatization with the reagent N-methyl-bis(trifluoroacetamide). No interferences from endogenous compounds are observed following the extraction of plasma samples from six different human subjects. The standard curves are linear over a working range of 10-500 ng/mL for citalopram, 10-300 ng/mL for desmethylcitalopram, 5-60 ng/mL for didesmethylcitalopram, 20-400 ng/mL for sertraline and desmethylsertraline, and 10-200 ng/mL for paroxetine. Recoveries measured at three concentrations range from 81 to 118% for the tertiary amines (citalopram and the internal standard methylmaprotiline), 73 to 95% for the secondary amines (desmethylcitalopram, paroxetine and sertraline), and 39 to 66% for the primary amines (didesmethylcitalopram and desmethylsertraline). Intra- and interday coefficients of variation determined at three concentrations range from 3 to 11% for citalopram and its metabolites, 4 to 15% for paroxetine, and 5 to 13% for sertraline and desmethylsertraline. The limits of quantitation of the method are 2 ng/mL for citalopram and paroxetine, 1 ng/mL for sertraline, and 0.5 ng/mL for desmethylcitalopram, didesmethylcitalopram, and desmethylsertraline. No interferences are noted from 20 other psychotropic drugs. This sensitive and specific method can be used for single-dose pharmacokinetics. It is also useful for therapeutic drug monitoring of these three drugs and could possibly be adapted for the quantitation of the two other selective serotonin reuptake inhibitors on the market, namely fluoxetine and fluvoxamine.
Resumo:
Isotope ratio mass spectrometry (IRMS) has recently made its appearance in the forensic community. This high-precision technology has already been applied to a broad range of forensic fields such as illicit drugs, explosives and flammable liquids, where current, routinely used techniques have limited powers of discrimination. The conclusions drawn from the majority of these IRMS studies appear to be very promising. Used in a comparative process, as in food or drug authentication, the measurement of stable isotope ratios is a new and remarkable analytical tool for the discrimination or the identification of a substance with a definite source or origin. However, the research consists mostly of preliminary studies. The significance of this 'new' piece of information needs to be evaluated in light of a forensic framework to assess the actual potential and validity of IRMS, considering the characteristics of each field. Through the isotopic study of black powder, this paper aims at illustrating the potential of the method and the limitations of current knowledge in stable isotopes when facing forensic problems.
Resumo:
BACKGROUND AND PURPOSE: Knowledge of cerebral blood flow (CBF) alterations in cases of acute stroke could be valuable in the early management of these cases. Among imaging techniques affording evaluation of cerebral perfusion, perfusion CT studies involve sequential acquisition of cerebral CT sections obtained in an axial mode during the IV administration of iodinated contrast material. They are thus very easy to perform in emergency settings. Perfusion CT values of CBF have proved to be accurate in animals, and perfusion CT affords plausible values in humans. The purpose of this study was to validate perfusion CT studies of CBF by comparison with the results provided by stable xenon CT, which have been reported to be accurate, and to evaluate acquisition and processing modalities of CT data, notably the possible deconvolution methods and the selection of the reference artery. METHODS: Twelve stable xenon CT and perfusion CT cerebral examinations were performed within an interval of a few minutes in patients with various cerebrovascular diseases. CBF maps were obtained from perfusion CT data by deconvolution using singular value decomposition and least mean square methods. The CBF were compared with the stable xenon CT results in multiple regions of interest through linear regression analysis and bilateral t tests for matched variables. RESULTS: Linear regression analysis showed good correlation between perfusion CT and stable xenon CT CBF values (singular value decomposition method: R(2) = 0.79, slope = 0.87; least mean square method: R(2) = 0.67, slope = 0.83). Bilateral t tests for matched variables did not identify a significant difference between the two imaging methods (P >.1). Both deconvolution methods were equivalent (P >.1). The choice of the reference artery is a major concern and has a strong influence on the final perfusion CT CBF map. CONCLUSION: Perfusion CT studies of CBF achieved with adequate acquisition parameters and processing lead to accurate and reliable results.
Resumo:
Background: In order to provide a cost-effective tool to analyse pharmacogenetic markers in malaria treatment, DNA microarray technology was compared with sequencing of polymerase chain reaction (PCR) fragments to detect single nucleotide polymorphisms (SNPs) in a larger number of samples. Methods: The microarray was developed to affordably generate SNP data of genes encoding the human cytochrome P450 enzyme family (CYP) and N-acetyltransferase-2 (NAT2) involved in antimalarial drug metabolisms and with known polymorphisms, i.e. CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, and NAT2. Results: For some SNPs, i.e. CYP2A6*2, CYP2B6*5, CYP2C8*3, CYP2C9*3/*5, CYP2C19*3, CYP2D6*4 and NAT2*6/*7/*14, agreement between both techniques ranged from substantial to almost perfect (kappa index between 0.61 and 1.00), whilst for other SNPs a large variability from slight to substantial agreement (kappa index between 0.39 and 1.00) was found, e. g. CYP2D6*17 (2850C>T), CYP3A4*1B and CYP3A5*3. Conclusion: The major limit of the microarray technology for this purpose was lack of robustness and with a large number of missing data or with incorrect specificity.
Resumo:
The application of statistics to science is not a neutral act. Statistical tools have shaped and were also shaped by its objects. In the social sciences, statistical methods fundamentally changed research practice, making statistical inference its centerpiece. At the same time, textbook writers in the social sciences have transformed rivaling statistical systems into an apparently monolithic method that could be used mechanically. The idol of a universal method for scientific inference has been worshipped since the "inference revolution" of the 1950s. Because no such method has ever been found, surrogates have been created, most notably the quest for significant p values. This form of surrogate science fosters delusions and borderline cheating and has done much harm, creating, for one, a flood of irreproducible results. Proponents of the "Bayesian revolution" should be wary of chasing yet another chimera: an apparently universal inference procedure. A better path would be to promote both an understanding of the various devices in the "statistical toolbox" and informed judgment to select among these.
Resumo:
Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference.
Resumo:
Stroma mediated wound healing signals may share similarities with the ones produced by tumor's microenvironment and their modulation may impact tumor response to the various anti-cancer treatments including radiation therapy. Therefore we conducted this study, to assess the crosstalk between stromal and carcinoma cells in response to radiotherapy by genetic modulation of the stroma and irradiation. We found that fibroblasts irrespective of their RhoB status do not modulate intrinsic radiosensitivity of TC-1 but produce diffusible factors able to modify tumor cell fate. Then we found that Wt and RhoB deficient fibroblasts stimulated TC-1 migration through distinct mechanisms which are TGF-β1 and MMP-mediated respectively. Lastly, we found that simultaneous irradiation of fibroblasts and TC-1 abrogated the pro-migratory phenotype by repression of TGF-β and MMP secretion. This last result is highly relevant to the clinical situation and suggests that conversely to, the current view; irradiated stroma would not enhance carcinoma migration and could be manipulated to promote anti-tumor immune response.
Resumo:
Objective: This study investigated patterns of the simultaneous use of alcohol, tobacco and cannabis among young polydrug users, and whether use of one substance might be a cue for use of another and associations with the severity of substance dependence. Methods: The study focused on 3 subsamples from the ongoing Swiss Cohort Study on Substance Use Risk Factors (C-SURF, N=5,990). It used 12 months of data on alcohol/tobacco co-users, alcohol/cannabis co-users and tobacco/cannabis co-users (N=2,660, 1,755 and 1,460 respectively. Simultaneous use, numbers of symptoms of substance dependence, and hazardous use of alcohol, tobacco and cannabis were assessed. The effect of simultaneous polydrug use (SPU) on the numbers of symptoms of substance dependence was tested using analysis of variance. Results: Polydrug use was most common as SPU, and less common as non/occasional SPU. Moreover, when participants started to use one substance while using another, the severity of substance dependence was more strongly associated with the triggered substance than with cue. Conclusions: This study highlights the necessity to take SPU into account. First, SPU rather than separate drug use was the most common pattern for polydrug users. Second, frequent SPU was associated with increased numbers of symptoms of substance dependence compared to non/occasional SPU. Furthermore, SPU may reveal the severity of substance use dependence, when substance use is triggered by a cue substance. For these reasons, SPU should be a serious cause for concern for prevention and intervention purposes.
Resumo:
Because natural selection is likely to act on multiple genes underlying a given phenotypic trait, we study here the potential effect of ongoing and past selection on the genetic diversity of human biological pathways. We first show that genes included in gene sets are generally under stronger selective constraints than other genes and that their evolutionary response is correlated. We then introduce a new procedure to detect selection at the pathway level based on a decomposition of the classical McDonald-Kreitman test extended to multiple genes. This new test, called 2DNS, detects outlier gene sets and takes into account past demographic effects and evolutionary constraints specific to gene sets. Selective forces acting on gene sets can be easily identified by a mere visual inspection of the position of the gene sets relative to their two-dimensional null distribution. We thus find several outlier gene sets that show signals of positive, balancing, or purifying selection but also others showing an ancient relaxation of selective constraints. The principle of the 2DNS test can also be applied to other genomic contrasts. For instance, the comparison of patterns of polymorphisms private to African and non-African populations reveals that most pathways show a higher proportion of nonsynonymous mutations in non-Africans than in Africans, potentially due to different demographic histories and selective pressures.