81 resultados para projective plane
Resumo:
Background: Although there have been many studies on isokinetic shoulder exercises in evaluation and rehabilitation programs, the cardiovascular and metabolic responses of those modes of muscle strength exercises have been poorly investigated. Objective: To analyze cardiovascular and metabolic responses during a standardized test used to study the internal (IR) and external (ER) rotators maximal isokinetic strength. Methods: Four days after an incremental exercise test on cycle ergometer, ten healthy subjects performed an isokinetic shoulder strength evaluation with cardiovascular (Heart rate, HR) and metabolic gas exchange (&Vdot;O_{2}) analysis. The IR and ER isokinetic strength, measured in seated position with 45° of shoulder abduction in scapular plane, was evaluated concentrically at 60, 120 and 240°/s and eccentrically at 60°/s, for both shoulder sides. An endurance test with 30 repetitions at 240°/s was performed at the end of each shoulder side testing. Results: There was a significant increase of mean HR with isokinetic exercise (P< 0.05). Increases of HR was 42-71% over the resting values. During endurance testing, increases of HR was 77-105% over the resting values, and corresponded to 85-86% of the maximal HR during incremental test. Increase of &Vdot;O_{2} during isokinetic exercises was from 6-11 ml/min/kg to 20-43 ml/min/kg. Conclusion: This study performed significant cardiovascular and metabolic responses to isokinetic exercise of rotators shoulder muscles. A warm-up should be performed before maximal high-intensity isokinetic shoulder testing. Our results indicated that observation and supervision are important during testing and/or training sessions, especially in subjects with risk for cardiovascular disorders.
Resumo:
Knowledge of the reflectivity of the sediment-covered seabed is of significant importance to marine seismic data acquisition and interpretation as it governs the generation of reverberations in the water layer. In this context pertinent, but largely unresolved, questions concern the importance of the typically very prominent vertical seismic velocity gradients as well as the potential presence and magnitude of anisotropy in soft surficial seabed sediments. To address these issues, we explore the seismic properties of granulometric end-member-type clastic sedimentary seabed models consisting of sand, silt, and clay as well as scale-invariant stochastic layer sequences of these components characterized by realistic vertical gradients of the P- and S-wave velocities. Using effective media theory, we then assess the nature and magnitude of seismic anisotropy associated with these models. Our results indicate that anisotropy is rather benign for P-waves, and that the S-wave velocities in the axial directions differ only slightly. Because of the very high P- to S-wave velocity ratios in the vicinity of the seabed our models nevertheless suggest that S-wave triplications may occur at very small incidence angles. To numerically evaluate the P-wave reflection coefficient of our seabed models, we apply a frequency-slowness technique to the corresponding synthetic seismic wavefields. Comparison with analytical plane-wave reflection coefficients calculated for corresponding isotropic elastic half-space models shows that the differences tend to be most pronounced in the vicinity of the elastic equivalent of the critical angle as well as in the post-critical range. We also find that the presence of intrinsic anisotropy in the clay component of our layered models tends to dramatically reduce the overall magnitude of the P-wave reflection coefficient as well as its variation with incidence angle.
Resumo:
This paper presents the predicted flow dynamics from the application of a Reynolds-averaged NavierStokes model to a series of bifurcation geometries with morphologies measured during previous flume experiments. The topography of the bifurcations consists of either plane or bedform-dominated beds which may or may not possess discordance between the two bifurcation distributaries. Numerical predictions are compared with experimental results to assess the ability of the numerical model to reproduce the division of flow into the bifurcation distributaries. The hydrodynamic model predicts: (1) diverting fluxes in the upstream channel which direct water into the distributaries; (2) super-elevation of the free surface induced at the bifurcation edge by pressure differences; and (3) counter-rotating secondary circulation cells which develop upstream of the apex of the bifurcation and move into the downstream channels, with water converging at the surface and diverging at the bed. When bedforms are not present, weak transversal fluxes characterize the upstream channel for almost its entire length, associated with clearly distinguishable secondary circulation cells, although these may be under-estimated by the turbulence model used in the solution. In the bedform dominated case, the same hydrodynamic conditions were not observed, with the bifurcation influence restricted and depth scale secondary circulation cells not forming. The results also demonstrate the dominant effect bed discordance has upon flow division between the two distributaries. Finally, results indicate that in bedform dominated rivers. Consequently, we suggest that sand-bed river bifurcations are more likely to have an influence that extends much further upstream and have a greater impact upon water distribution. This may contribute to observed morphological differences between sand-bedded and gravel-bedded braided river networks. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Two-dimensional (2D)-breath-hold coronary magnetic resonance angiography (MRA) has been shown to be a fast and reliable method to depict the proximal coronary arteries. Recent developments, however, allow for free-breathing navigator gated and navigator corrected three-dimensional (3D) coronary MRA. These 3D approaches have potential for improved signal-to-noise ratio (SNR) and allow for the acquisition of adjacent thin slices without the misregistration problems known from 2D approaches. Still, a major impediment of a 3D acquisition is the increased scan time. The purpose of this study was the implementation of a free-breathing navigator gated and corrected ultra-fast 3D coronary MRA technique, which allows for scan times of less than 5 minutes. Twelve healthy adult subjects were examined in the supine position using a navigator gated and corrected ECG triggered ultra-fast 3D interleaved gradient echo planar imaging sequence (TFE-EPI). A 3D slab, consisting of 20 slices with a reconstructed slice thickness of 1.5 mm, was acquired with free-breathing. The diastolic TFE-EPI acquisition block was preceded by a T2prep pre-pulse, a diaphragmatic navigator pulse, and a fat suppression pre-pulse. With a TR of 19 ms and an effective TE of 5.4 ms, the duration of the data acquisition window duration was 38 ms. The in-plane spatial resolution was 1.0-1.3 mm*1.5-1.9 mm. In all cases, the entire left main (LM) and extensive portions of the left anterior descending (LAD) and right coronary artery (RCA) could be visualized with an average scan time for the entire 3D-volume data set of 2:57 +/- 0:51 minutes. Average contiguous vessel length visualized was 53 +/- 11 mm (range: 42 to 75 mm) for the LAD and 84 +/- 14 mm (range: 62 to 112 mm) for the RCA. Contrast-to-noise between coronary blood and myocardium was 5.0 +/- 2.3 for the LM/LAD and 8.0 +/- 2.9 for the RCA, resulting in an excellent suppression of myocardium. We present a new approach for free-breathing 3D coronary MRA, which allows for scan times superior to corresponding 2D coronary MRA approaches, and which takes advantage of the enhanced SNR of 3D acquisitions and the post-processing benefits of thin adjacent slices. The robust image quality and the short average scanning time suggest that this approach may be useful for screening the major coronary arteries or identification of anomalous coronary arteries. J. Magn. Reson. Imaging 1999;10:821-825.
Resumo:
RATIONALE AND OBJECTIVES: The purpose of this study was the investigation of the impact of real-time adaptive motion correction on image quality in navigator-gated, free-breathing, double-oblique three-dimensional (3D) submillimeter right coronary magnetic resonance angiography (MRA). MATERIALS AND METHODS: Free-breathing 3D right coronary MRA with real-time navigator technology was performed in 10 healthy adult subjects with an in-plane spatial resolution of 700 x 700 microm. Identical double-oblique coronary MR-angiograms were performed with navigator gating alone and combined navigator gating and real-time adaptive motion correction. Quantitative objective parameters of contrast-to-noise ratio (CNR) and vessel sharpness and subjective image quality scores were compared. RESULTS: Superior vessel sharpness, increased CNR, and superior image quality scores were found with combined navigator gating and real-time adaptive motion correction (vs. navigator gating alone; P < 0.01 for all comparisons). CONCLUSION: Real-time adaptive motion correction objectively and subjectively improves image quality in 3D navigator-gated free-breathing double-oblique submillimeter right coronary MRA.
Resumo:
This study reviewed the subjective, clinical and radiological outcome of 71 patients (84 feet) treated by scarf osteotomy for hallux valgus deformity at our institution from 1995 to 1998 with an average follow-up time of 22 months (range, 17 to 48 months). At the time of follow-up, 39% of the patients were very satisfied, 50% were satisfied and 11% were not satisfied. The mean AOFAS score raised significantly from 43 points (14-68) preoperatively to 82 points (39 to 100) at follow-up (p < 0.001). The radiological angles including M1-M2, M1-P1, M1-M5 and DMAA improved significantly (p < 0.001). Among the 16 complications recorded, seven (8%) were minor and nine (11%) required an additional procedure. The scarf osteotomy of the first metatarsal coupled with a lateral soft-tissue release and, in three-quarters of our cases, with a basal closing wedge varisation osteotomy of the first phalanx, resulted in overall high satisfaction rate as well as significant clinical and radiological improvements in our series. Nevertheless, the range of motion of the first MP joint remained low: 30 degrees to 74 degrees in 52 patients (62%) and <30 degrees in four patients (5%). Furthermore, the mobility of the first ray as well as the consequences of the procedure in the sagittal plane need to be assessed more accurately, and this may be achieved by incorporating measurement of the plantar pressures in the forefoot area into the global rating system.