133 resultados para parent involvement
Resumo:
BACKGROUND: The relationship between physicians and patients has undergone important changes, and the current emancipation of patients has led to a real partnership in medical decision making. The present study aimed to assess patients' preferences on different aspects of decision making during treatment and potential complications, as well as the amount and type of preoperative information wanted before visceral surgery. METHODS: This was a prospective non-randomized study based on a questionnaire given to 253 consecutive patients scheduled for elective gastrointestinal surgery. RESULTS: In considering surgical complications or treatment in the intensive care unit, 64 % of patients wished to take an active role in any medical decisions. The respective figures for cardiac resuscitation and treatment limitations were 89 and 60 %. As for information, 73, 77, and 47 % of patients wish detailed information, information on a potential ICU hospitalization, and knowledge of cardiac resuscitation, respectively. Elderly and low-educated patients were significantly less interested in shared medical decision making (p = 0.003 and 0.015), and in receiving information (p = 0.03 and 0.05). Similarly, involvement of the family in decision making was significantly less important to elderly and male patients (p = 0.05 and 0.03, respectively). Neither the type of operation (minor or major) nor the severity of disease (malignancies versus non-malignancies) was a significant factor for shared decision making, information, or family involvement. CONCLUSIONS: The vast majority of surgical patients clearly want to get adequate preoperative information about their disease and the planned treatment. They also consider it crucial to be involved in any kind of decision making for treatment and complications. For most patients, the family role is limited to supporting the treating physicians if the patient is unable to participate in decision making.
Resumo:
A delta(34)S value of +6.3 +/- 1.5% was estimated for the rhyodacitic degassing magma present underneath the hydrothermal system of Nisyros, based on the S isotope ratios of H2S in fumarolic vapors. This value was estimated by modeling the irreversible water-rock mass transfers occurring during the generation of the hydrothermal liquid which separates these fumarolic vapors. The S isotope ratio of the rhyodacitic degassing magma of Nisyros is consistent with fractional crystallization of a parent basaltic magma with an initial delta(34)S value of +4% (+/-at least 1.5%). This positive value could be explained by mantle contamination due to by either transference of fluids derived from subducted materials or involvement of altered oceanic crust, whereas contribution of biogenic sulfides from sediments seems to be negligible or nil. This conclusion agrees with the lack of N-2 and CO2 from thermal decomposition of organic matter contained in subducted sediments, which is a characteristic of the whole Aegean arc system. Since hydrothermal S at Milos and Santorini has isotope ratios similar to those determined at Nisyros, it seems likely that common controlling processes are active throughout the Aegean island arc. (C) 2002 Elsevier, Science B.V. All rights reserved.
Resumo:
1. Studies were performed in normal subjects and in rats to assess the effect of angiotensin converting enzyme (ACE) inhibition on the kallikrein-kinin system. As ACE is identical to kininase II, one of the enzymes physiologically involved in bradykinin degradation, bradykinin may be expected to accumulate during ACE inhibition. 2. A competitive antagonist of bradykinin was used to explore in unanaesthetized rats the contribution of circulating bradykinin to blood pressure control under ACE inhibition. 3. No evidence was found for a role of this vasodilating peptide in the blood pressure lowering effect of acute ACE inhibition. 4. The plasma activity of carboxypeptidase N (= kininase I), another pathway of bradykinin degradation, remained intact during a 1 week course of treatment with an ACE inhibitor in normal subjects. This therefore indicates that bradykinin formed during ACE inhibition can still be metabolized.
Resumo:
The azole antifungal fluconazole possesses only fungistatic activity in Candida albicans and, therefore, this human pathogen is tolerant to this agent. However, tolerance to fluconazole can be inhibited when C. albicans is exposed to fluconazole combined with the immunosuppressive drug cyclosporin A, which is known to inhibit calcineurin activity in yeast. A mutant lacking both alleles of a gene encoding the calcineurin A subunit (CNA) lost viability in the presence of fluconazole, thus making calcineurin essential for fluconazole tolerance. Consistent with this observation, tolerance to fluconazole was modulated by calcium ions or by the expression of a calcineurin A derivative autoactivated by the removal of its C-terminal inhibitory domain. Interestingly, CNA was also essential for tolerance to other antifungal agents (voriconazole, itraconazole, terbinafine, amorolfine) and to several other metabolic inhibitors (caffeine, brefeldin A, mycophenolic acid, fluphenazine) or cell wall-perturbing agents (SDS, calcofluor white, Congo red), thus indicating that the calcineurin pathway plays an important role in the survival of C. albicans in the presence of external growth inhibitors. Several genes, including PMC1, a vacuolar calcium P-type ATPase, were regulated in a calcineurin- and fluconazole-dependent manner. However, PMC1 did not play a direct role in the survival of C. albicans when exposed to fluconazole. In addition to these different properties, calcineurin was found to affect colony morphology in several media known to modulate the C. albicans dimorphic switch. In particular, calcineurin was found to be essential for C. albicans viability in serum-containing media. Finally, calcineurin was found to be necessary for the virulence of C. albicans in a mice model of infection, thus making calcineurin an important element for adequate adaptation to the conditions of the host environment.
Resumo:
BACKGROUND: Management of ischemic stroke in the presence of aneurysmal brain disease is controversial. Recent retrospective evidence suggests that in selected patients, intravenous thrombolysis (IVT) remains a safe approach for reperfusion. METHODS: We document a case of post-thrombolysis aneurysmal rupture. Supported by additional scientific literature we postulate that acute aneurysmal thrombosis leading to stroke in the culprit artery may be an ominous sign of rupture and should be considered separately from fortuitously discovered distant aneurysmal disease. RESULTS: A 71-year-old female presented with an acute right middle cerebral artery stroke syndrome. IVT allowed vessel reperfusion and revealed a previously concealed, juxtaposed non-giant M1 segment saccular aneurysm. Secondary aneurysmal rupture ensued. The aneurysm was secured by surgical clipping. Postoperative course was uneventful. CONCLUSIONS: This case shows that despite reports of thrombolysis safety in the presence of brain aneurysms, thrombolysis remains potentially hazardous and hints toward an increased risk when the stroke arises on the parent vessel itself.
Resumo:
AIMS: To evaluate the effect of a structured preoperative preparation on child and parent state anxiety, child behavioural change and parent satisfaction. BACKGROUND: It is estimated that around 50-70% of hospitalised children experience severe anxiety and distress prior to surgery. Children who are highly anxious and distressed preoperatively are likely to be distressed on awakening and have negative postoperative behaviour. Although education before surgery has been found to be useful mostly in North America, the effectiveness of preoperative preparation programme adapted to the Australian context remains to be tested. DESIGN: This single-blind randomised controlled study was conducted at a tertiary referral hospital for children in Western Australia. METHODS: Following ethics approval and parental consent, 73 children and one of their carers (usually a parent) were randomly assigned into two groups. The control group had standard practice with no specific preoperative education and the experimental group received a preoperative preparation, including a photo file, demonstration of equipment using a role-modelling approach and a tour. RESULTS: The preoperative preparation reduced parent state anxiety significantly (-2·32, CI -4·06 to -0·56, p = 0·009), but not child anxiety (-0·59, CI -1·23 to 0·06, p = 0·07). There was no significant difference in child postoperative behaviour or parent satisfaction between the groups. There was a significant two-point pain score reduction in the preoperative preparation group, when compared with the control group median 2 (IQR 5) and 4 (IQR 4), respectively (p = 0·001).¦CONCLUSIONS: Preoperative preparation was more efficient on parent than child. Although the preoperative preparation had limited effect on child anxiety, it permitted to decrease pain experience in the postoperative period.¦RELEVANCE TO CLINICAL PRACTICE: Parents should be actively involved in their child preoperative preparation.
Resumo:
Neuronal autophagy is increased in numerous excitotoxic conditions including neonatal cerebral hypoxia-ischemia (HI). However, the role of this HI-induced autophagy remains unclear. To clarify this role we established an in vitro model of excitotoxicity combining kainate treatment (Ka, 30 µM) with hypoxia (Hx, 6% oxygen) in primary neuron cultures. KaHx rapidly induced excitotoxic death that was completely prevented by MK801 or EGTA. KaHx also stimulated neuronal autophagic flux as shown by a rise in autophagosome number (increased levels of LC3-II and punctate LC3 labeling) accompanied by increases in lysosomal abundance and activity (increased SQSTM1/p62 degradation, and increased LC3-II levels in the presence of lysosomal inhibitors) and fusion (shown using an RFP-GFP-LC3 reporter). To determine the role of the enhanced autophagy we applied either pharmacological autophagy inhibitors (3-methyladenine or pepstatinA/E64) or lentiviral vectors delivering shRNAs targeting Becn1 or Atg7. Both strategies reduced KaHx-induced neuronal death. A prodeath role of autophagy was also confirmed by the enhanced toxicity of KaHx in cultures overexpressing BECN1 or ATG7. Finally, in vivo inhibition of autophagy by intrastriatal injection of a lentiviral vector expressing a Becn1-targeting shRNA increased the volume of intact striatum in a rat model of severe neonatal cerebral HI. These results clearly show a death-mediating role of autophagy in hypoxic-excitotoxic conditions and suggest that inhibition of autophagy should be considered as a neuroprotective strategy in HI brain injuries.
Resumo:
SUMMARY Inflammation has evolved as a mechanism to defend the body against invading microorganisms and to respond to injury. It requires the coordinated response of a large number of cell types from the whole organism in a time- and space-dependent fashion. This coordination involves several cell-cell communication mechanisms. Exchange of humoral mediators such as cytokines is a major one. Moreover, direct contact between cells happens and plays a primordial role, for example when macrophages present antigens to lymphocytes. Contact between endothelial cells and leucocytes occurs when the latter cross the blood vessel barrier and transmigrate to the inflammatory site. A particular way by which cells communicate with each other in the course of inflammation, which at this time starts to gain attention, is the intercellular communication mediated by gap junctions. Gap junctions are channels providing a direct pathway (i.e. without transit through the extracellular space) for the diffusion of small molecules between adjacent cells. This process is known as gap junctional intercellular communication (GJIC). The general aim of this thesis was to study a possible involvement of GJIC in the pathophysiology of inflammation. A first part of the work was dedicated to study the implication of GJIC in the modification of vascular endothelial function by inflammation. In a second part, we were interested in the possible role of GJIC in the transmigration of neutrophil polymorphonuclear leucocytes through the endothelium. The main positive finding of this work is that acute inflammation preferentially modulates the expression of connexin 40 (Cx40), a gap junction protein specifically expressed in vascular endothelium. The modulation could be towards overexpression (aortic endothelium of septic rats) or towards downregulation (acutely inflamed mouse lung). We put a lot of efforts in search of possible functions of these modulations, in two directions: a potential protective role of Cx40 increased expression against sepsis-induced endothelial dysfunction, and a facilitating role of Cx40 decreased expression in neutrophil transmigration. To pursue both directions, it seemed logical to study the impact of Cx40 deletion using knock-out mice. Concerning the potential protective role of Cx40 overexpression we encountered a roadblock as we observed, in the aorta, a Cx40 downregulation in wild type mouse whereas Cx40 was upregulated in the rat. Regarding the second direction and using an in vivo approach, we observed that pulmonary neutrophil transmigration was not affected by the genetic deletion of Cx40. In spite of their negative nature, these results are the very first ones regarding the potential implication of GJIC concerning leucocyte transmigration in vivo. Because this process involves such tight cell-cell physical contacts, the hypothesis for a role of GJIC remains attractive.
Resumo:
High-density lipoproteins (HDLs) protect pancreatic beta cells against apoptosis. This property might relate to the increased risk to develop diabetes in patients with low HDL blood levels. The mechanisms by which HDLs protect beta cells are poorly characterized however. Here we used a transcriptomic approach to identify genes differentially modulated by HDLs in beta cells subjected to apoptotic stimuli. The transcript encoding 4E-BP1 was up-regulated by serum starvation and HDLs blocked this increase. 4E-BP1 inhibits cap-dependent translation in its non- or hypo-phosphorylated state but it looses this ability when hyper-phosphorylated. At the protein level, 4E-BP1 was also up-regulated in response to starvation and IL1beta and this was blunted by HDLs. While an ectopic increase of 4E-BP1 expression induced beta cell death, silencing 4E-BP1 increase with shRNAs inhibited the apoptotic-inducing capacities of starvation. HDLs can therefore protect beta cells by blocking 4E-BP1 protein expression but this is not the sole protective mechanism activated by HDLs. Indeed, HDLs blocked apoptosis induced by ER stress with no associated decrease in total 4E-BP1 induction. Although, HDLs favored the phosphorylation, and hence the inactivation of 4E-BP1 in these conditions, this appeared not to be required for HDL protection. Our results indicate that HDLs can protect beta cells through modulation of 4E-BP1 depending on the type of stress stimuli.
Resumo:
Sweet syndrome is a non infectious febrile disease with a neutrophilic infiltrate of dermis. Extracutaneous involvement can occur. We report two cases of Sweet syndrome with cutaneous and pulmonary involvement and give a short review of the literature of pulmonary involvement in Sweet syndrome.