105 resultados para minerals processing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing image processing is nowadays a mature research area. The techniques developed in the field allow many real-life applications with great societal value. For instance, urban monitoring, fire detection or flood prediction can have a great impact on economical and environmental issues. To attain such objectives, the remote sensing community has turned into a multidisciplinary field of science that embraces physics, signal theory, computer science, electronics, and communications. From a machine learning and signal/image processing point of view, all the applications are tackled under specific formalisms, such as classification and clustering, regression and function approximation, image coding, restoration and enhancement, source unmixing, data fusion or feature selection and extraction. This paper serves as a survey of methods and applications, and reviews the last methodological advances in remote sensing image processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain perfusion can be assessed by CT and MR. For CT, two major techniquesare used. First, Xenon CT is an equilibrium technique based on a freely diffusibletracer. First pass of iodinated contrast injected intravenously is a second method,more widely available. Both methods are proven to be robust and quantitative,thanks to the linear relationship between contrast concentration and x-ray attenuation.For the CT methods, concern regarding x-ray doses delivered to the patientsneed to be addressed. MR is also able to assess brain perfusion using the firstpass of gadolinium based contrast agent injected intravenously. This method hasto be considered as a semi-quantitative because of the non linear relationshipbetween contrast concentration and MR signal changes. Arterial spin labelingis another MR method assessing brain perfusion without injection of contrast. Insuch case, the blood flow in the carotids is magnetically labelled by an externalradiofrequency pulse and observed during its first pass through the brain. Eachof this various CT and MR techniques have advantages and limits that will be illustratedand summarised.Learning Objectives:1. To understand and compare the different techniques for brain perfusionimaging.2. To learn about the methods of acquisition and post-processing of brainperfusion by first pass of contrast agent for CT and MR.3. To learn about non contrast MR methods (arterial spin labelling).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study investigated cognitive resource allocation in discourse processing by means of pupil dilation and behavioral measures. Short question-answer dialogs were presented to listeners. Either the context question queried a new information focus in the successive answer, or else the context query was corrected in the answer sentence (correction information). The information foci contained in the answer sentences were either adequately highlighted by prosodic means or not. Participants had to judge the adequacy of the focus prosody with respect to the preceding context question. Prosodic judgment accuracy was higher in the conditions bearing adequate focus prosody than in the conditions with inadequate focus prosody. Latency to peak pupil dilation was longer when new information foci were perceived compared to correction foci. Moreover, for the peak dilation, an interaction of focus type and prosody was found. Post hoc statistical tests revealed that prosodically adequate correction focus positions were processed with smaller peak dilation in comparison to all other dialog conditions. Thus, pupil dilation and results of a principal component analysis suggest an interaction of focus type and focus prosody in discourse processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, braided river research has considered flow, sediment transport processes and, recently, vegetation dynamics in relation to river morphodynamics. However, if considering the development of woody vegetated patches over a time scale of decades, we must consider the extent to which soil forming processes, particularly related to soil organic matter, impact the alluvial geomorphic-vegetation system. Here we quantify the soil organic matter processing (humification) that occurs on young alluvial landforms. We sampled different geomorphic units, ranging from the active river channel to established river terraces in a braided river system. For each geomorphic unit, soil pits were used to sample sediment/soil layers that were analysed in terms of grain size (<2mm) and organic matter quantity and quality (RockEval method). A principal components analysis was used to identify patterns in the dataset. Results suggest that during the succession from bare river gravels to a terrace soil, there is a transition from small amounts of external organic matter supply provided by sedimentation processes (e.g. organic matter transported in suspension and deposited on bars), to large amounts of autogenic in situ organic matter production due to plant colonisation. This appears to change the time scale and pathways of alluvial succession (bio-geomorphic succession). However, this process is complicated by: the ongoing possibility of local sedimentation, which can serve to isolate surface layers via aggradation from the exogenic supply; and erosion which tends to create fresh deposits upon which organic matter processing must re-start. The result is a complex pattern of organic matter states as well as a general lack of any clear chronosequence within the active river corridor. This state reflects the continual battle between deposition events that can isolate organic matter from the surface, erosion events that can destroy accumulating organic matter and the early ecosystem processes necessary to assist the co-evolution of soil and vegetation. A key question emerges over the extent to which the fresh organic matter deposited in the active zone is capable of significantly transforming the local geochemical environment sufficiently to accelerate soil development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Working memory, commonly defined as the ability to hold mental representations on line transiently and to manipulate these representations, is known to be a core deficit in schizophrenia. The aim of the present study was to investigate the visuo-spatial component of the working memory in schizophrenia, and more precisely to what extent the dynamic visuo-spatial information processing is impaired in schizophrenia patients. For this purpose we used a computerized paradigm in which 29 patients with schizophrenia (DSMIV, Diagnostic Interview for Genetic Studies) and 29 age and sex matched control subjects (DIGS) had to memorize a plane moving across the computer screen and to identify the observed trajectory among 9 plots proposed together. Each trajectory could be seen max. 3 times if needed. The results showed no difference between schizophrenia patients and controls regarding the number of correct trajectory identified after the first presentation. However, when we determine the mean number of correct trajectories on the basis of 3 trials, we observed that schizophrenia patients are significantly less performant than controls (Mann-Whitney, p _ 0.002). These findings suggest that, although schizophrenia patients are able to memorize some dynamic trajectories as well as controls, they do not profit from the repetition of the trajectory presentation. These findings are congruent with the hypothesis that schizophrenia could induce an unbalance between local and global information processing: the patients may be able to focus on details of the trajectory which could allow them to find the right target (bottom-up processes), but may show difficulty to refer to previous experience in order to filter incoming information (top-down processes) and enhance their visuo-spatial working memory abilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In (1) H magnetic resonance spectroscopy, macromolecule signals underlay metabolite signals, and knowing their contribution is necessary for reliable metabolite quantification. When macromolecule signals are measured using an inversion-recovery pulse sequence, special care needs to be taken to correctly remove residual metabolite signals to obtain a pure macromolecule spectrum. Furthermore, since a single spectrum is commonly used for quantification in multiple experiments, the impact of potential macromolecule signal variability, because of regional differences or pathologies, on metabolite quantification has to be assessed. In this study, we introduced a novel method to post-process measured macromolecule signals that offers a flexible and robust way of removing residual metabolite signals. This method was applied to investigate regional differences in the mouse brain macromolecule signals that may affect metabolite quantification when not taken into account. However, since no significant differences in metabolite quantification were detected, it was concluded that a single macromolecule spectrum can be generally used for the quantification of healthy mouse brain spectra. Alternatively, the study of a mouse model of human glioma showed several alterations of the macromolecule spectrum, including, but not limited to, increased mobile lipid signals, which had to be taken into account to avoid significant metabolite quantification errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Validation is the main bottleneck preventing theadoption of many medical image processing algorithms inthe clinical practice. In the classical approach,a-posteriori analysis is performed based on someobjective metrics. In this work, a different approachbased on Petri Nets (PN) is proposed. The basic ideaconsists in predicting the accuracy that will result froma given processing based on the characterization of thesources of inaccuracy of the system. Here we propose aproof of concept in the scenario of a diffusion imaginganalysis pipeline. A PN is built after the detection ofthe possible sources of inaccuracy. By integrating thefirst qualitative insights based on the PN withquantitative measures, it is possible to optimize the PNitself, to predict the inaccuracy of the system in adifferent setting. Results show that the proposed modelprovides a good prediction performance and suggests theoptimal processing approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crucial step in the life cycle of arenaviruses is the biosynthesis of the mature fusion-active viral envelope glycoprotein (GP) that is essential for virus-host cell attachment and entry. The maturation of the arenavirus GP precursor (GPC) critically depends on proteolytic processing by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we undertook a molecular characterization of the SKI-1/S1P processing of the GPCs of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the pathogenic Lassa virus (LASV). Previous studies showed that the GPC of LASV undergoes processing in the endoplasmic reticulum (ER)/cis-Golgi compartment, whereas the LCMV GPC is cleaved in a late Golgi compartment. Herein we confirm these findings and provide evidence that the SKI-1/S1P recognition site RRLL, present in the SKI-1/S1P prodomain and LASV GPC, but not in the LCMV GPC, is crucial for the processing of the LASV GPC in the ER/cis-Golgi compartment. Our structure-function analysis revealed that the cleavage of arenavirus GPCs, but not cellular substrates, critically depends on the autoprocessing of SKI-1/S1P, suggesting differences in the processing of cellular and viral substrates. Deletion mutagenesis showed that the transmembrane and intracellular domains of SKI-1/S1P are dispensable for arenavirus GPC processing. The expression of a soluble form of the protease in SKI-I/S1P-deficient cells resulted in the efficient processing of arenavirus GPCs and rescued productive virus infection. However, exogenous soluble SKI-1/S1P was unable to process LCMV and LASV GPCs displayed at the surface of SKI-I/S1P-deficient cells, indicating that GPC processing occurs in an intracellular compartment. In sum, our study reveals important differences in the SKI-1/S1P processing of viral and cellular substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low pressure partial melting of basanitic and ankaramitic dykes gave rise to unusual, zebra-like migmatites, in the contact aureole of a layered pyroxenite-gabbro intrusion, in the root zone of an ocean island (Basal Complex, Fuerteventura, Canary Islands). These migmatites are characterised by a dense network of closely spaced, millimetre-wide leucocratic segregations. Their mineralogy consists of plagioclase (An(32-36)), diopside, biotite, oxides (magnetite, ilmenite), +/-amphibole, dominated by plagioclase in the leucosome and diopside in the melanosome. The melanosome is almost completely recrystallised, with the preservation of large, relict igneous diopside phenocrysts in dyke centres. Comparison of whole-rock and mineral major- and trace-element data allowed us to assess the redistribution of elements between different mineral phases and generations during contact metamorphism and partial melting. Dykes within and outside the thermal aureole behaved like closed chemical systems. Nevertheless, Zr, Hf, Y and REEs were internally redistributed, as deduced by comparing the trace element contents of the various diopside generations. Neocrystallised diopside - in the melanosome, leucosome and as epitaxial phenocryst rims - from the migmatite zone, are all enriched in Zr, Hf, Y and REEs compared to relict phenocrysts. This has been assigned to the liberation of trace elements on the breakdown of enriched primary minerals, kaersutite and sphene, on entering the thermal aureole. Major and trace element compositions of minerals in migmatite melanosomes and leucosomes are almost identical, pointing to a syn- or post-solidus reequilibration on the cooling of the migmatite terrain i.e. mineral-melt equilibria were reset to mineral-mineral equilibria. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent publication in this journal [Neumann et al., Forensic Sci. Int. 212 (2011) 32-46] presented the results of a field study that revealed the data provided by the fingermarks not processed in a forensic science laboratory. In their study, the authors were interested in the usefulness of this additional data in order to determine whether such fingermarks would have been worth submitting to the fingermark processing workflow. Taking these ideas as a starting point, this communication here places the fingermark in its context of a case brought before a court, and examines the question of processing or not processing a fingermark from a decision-theoretic point of view. The decision-theoretic framework presented provides an answer to this question in the form of a quantified expression of the expected value of information (EVOI) associated with the processed fingermark, which can then be compared with the cost of processing the mark.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT (English)An accurate processing of the order between sensory events at the millisecond time scale is crucial for both sensori-motor and cognitive functions. Temporal order judgment (TOJ) tasks, is the ability of discriminating the order of presentation of several stimuli presented in a rapid succession. The aim of the present thesis is to further investigate the spatio-temporal brain mechanisms supporting TOJ. In three studies we focus on the dependency of TOJ accuracy on the brain states preceding the presentation of TOJ stimuli, the neural correlates of accurate vs. inaccurate TOJ and whether and how TOJ performance can be improved with training.In "Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy" (Bernasconi et al., 2011), we investigated if the brain activity immediately preceding the presentation of the stimuli modulates TOJ performance. By contrasting the electrophysiological activity before the stimulus presentation as a function of TOJ accuracy we observed a stronger pre-stimulus beta (20Hz) oscillatory activity within the left posterior sylvian region (PSR) before accurate than inaccurate TOJ trials.In "Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment" (Bernasconi et al., 2010a), and "Plastic brain mechanisms for attaining auditory temporal order judgment proficiency" (Bernasconi et al., 2010b), we investigated the spatio-temporal brain dynamics underlying auditory TOJ. In both studies we observed a topographic modulation as a function of TOJ performance at ~40ms after the onset of the first sound, indicating the engagement of distinct configurations of intracranial generators. Source estimations in the first study revealed a bilateral PSR activity for both accurate and inaccurate TOJ trials. Moreover, activity within left, but not right, PSR correlated with TOJ performance. Source estimations in the second study revealed a training-induced left lateralization of the initial bilateral (i.e. PSR) brain response. Moreover, the activity within the left PSR region correlated with TOJ performance.Based on these results, we suggest that a "temporal stamp" is established within left PSR on the first sound within the pair at early stages (i.e. ~40ms) of cortical processes, but is critically modulated by inputs from right PSR (Bernasconi et al., 2010a; b). The "temporal stamp" on the first sound may be established via a sensory gating or prior entry mechanism.Behavioral and brain responses to identical stimuli can vary due to attention modulation, vary with experimental and task parameters or "internal noise". In a fourth experiment (Bernasconi et al., 2011b) we investigated where and when "neural noise" manifest during the stimulus processing. Contrasting the AEPs of identical sound perceived as High vs. Low pitch, a topographic modulation occurred at ca. 100ms after the onset of the sound. Source estimation revealed activity within regions compatible with pitch discrimination. Thus, we provided neurophysiological evidence for the variation in perception induced by "neural noise".ABSTRACT (French)Un traitement précis de l'ordre des événements sensoriels sur une échelle de temps de milliseconde est crucial pour les fonctions sensori-motrices et cognitives. Les tâches de jugement d'ordre temporel (JOT), consistant à présenter plusieurs stimuli en succession rapide, sont traditionnellement employées pour étudier les mécanismes neuronaux soutenant le traitement d'informations sensorielles qui varient rapidement. Le but de cette thèse est d'étudier le mécanisme cérébral soutenant JOT. Dans les trois études présentées nous nous sommes concentrés sur les états du cerveau précédant la présentation des stimuli de JOT, les bases neurales pour un JOT correct vs. incorrect et sur la possibilité et les moyens d'améliorer l'exécution du JOT grâce à un entraînement.Dans "Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy" (Bernasconi et al., 2011),, nous nous sommes intéressé à savoir si l'activité oscillatoire du cerveau au pré-stimulus modulait la performance du JOT. Nous avons contrasté l'activité électrophysiologique en fonction de la performance TOJ, mesurant une activité oscillatoire beta au pré-stimulus plus fort dans la région sylvian postérieure gauche (PSR) liée à un JOT correct.Dans "Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment" (Bernasconi et al., 2010a), et "Plastic brain mechanisms for attaining auditory temporal order judgment proficiency" (Bernasconi et al., 2010b), nous avons étudié la dynamique spatio-temporelle dans le cerveau impliqué dans le traitement du JOT auditif. Dans ses deux études, nous avons observé une modulation topographique à ~40ms après le début du premier son, en fonction de la performance JOT, indiquant l'engagement des configurations de générateurs intra- crâniens distincts. La localisation de source dans la première étude indique une activité bilatérale de PSR pour des JOT corrects vs. incorrects. Par ailleurs, l'activité dans PSR gauche, mais pas dans le droit, est corrélée avec la performance du JOT. La localisation de source dans la deuxième étude indiquait une latéralisation gauche induite par l'entraînement d'une réponse initialement bilatérale du cerveau. D'ailleurs, l'activité dans la région PSR gauche corrèlait avec la performance de TOJ.Basé sur ces résultats, nous proposons qu'un « timbre-temporel » soit établi très tôt (c.-à-d. à ~40ms) sur le premier son par le PSR gauche, mais module par l'activité du PSR droite (Bernasconi et al., 2010a ; b). « Le timbre- temporel » sur le premier son peut être établi par le mécanisme neuronal de type « sensory gating » ou « prior entry ».Les réponses comportementales et du cerveau aux stimuli identiques peut varier du à des modulations d'attention ou à des variations dans les paramètres des tâches ou au bruit interne du cerveau. Dans une quatrième expérience (Bernasconi et al. 2011B), nous avons étudié où et quand le »bruit neuronal« se manifeste pendant le traitement des stimuli. En contrastant les AEPs de sons identiques perçus comme aigus vs. grave, nous avons mesuré une modulation topographique à env. 100ms après l'apparition du son. L'estimation de source a révélé une activité dans les régions compatibles avec la discrimination de fréquences. Ainsi, nous avons fourni des preuves neurophysiologiques de la variation de la perception induite par le «bruit neuronal».

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typically developing (TD) preschoolers and age-matched preschoolers with specific language impairment (SLI) received event-related potentials (ERPs) to four monosyllabic speech sounds prior to treatment and, in the SLI group, after 6 months of grammatical treatment. Before treatment, the TD group processed speech sounds faster than the SLI group. The SLI group increased the speed of their speech processing after treatment. Posttreatment speed of speech processing predicted later impairment in comprehending phrase elaboration in the SLI group. During the treatment phase, change in speed of speech processing predicted growth rate of grammar in the SLI group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Diisononyl phthalate (DiNP) is primarily used as a plasticizer in polyvinyl chloride (PVC) materials. While information is available on general population exposure to DiNP, occupational exposure data are lacking. We present DiNP metabolite urinary concentrations in PVC processing workers, estimate DiNP daily intake for these workers, and compare worker estimates to other populations. METHODS: We assessed DiNP exposure in participants from two companies that manufactured PVC materials, a PVC film manufacturer (n = 25) and a PVC custom compounder (n = 12). A mid-shift and end-shift urine sample was collected from each participant and analyzed for the DiNP metabolite mono(carboxy-isooctyl) phthalate (MCiOP). Mixed models were used to assess the effect on MCiOP concentrations of a worker being assigned to (1) a task using DiNP and (2) a shift where DiNP was used. A simple pharmacokinetic model was used to estimate DiNP daily intake from the MCiOP concentrations. RESULTS: Creatinine-adjusted MCiOP urinary concentrations ranged from 0.42-80 μg/g in PVC film and from 1.11-13.4 μg/g in PVC compounding. PVC film participants who worked on a task using DiNP (n = 7) had the highest MCiOP geometric mean (GM) end-shift concentration (25.2 μg/g), followed by participants who worked on a shift where DiNP was used (n = 11) (17.7 μg/g) as compared to participants with no task (2.92 μg/g) or shift (2.08 μg/g) exposure to DiNP. The GM end-shift MCiOP concentration in PVC compounding participants (4.80 μg/g) was comparable to PVC film participants with no task or shift exposure to DiNP. Because no PVC compounding participants were assigned to tasks using DINP on the day sampled, DiNP exposure in this company may be underestimated. The highest DiNP intake estimate was 26 μg/kg/day. CONCLUSION: Occupational exposure to DiNP associated with PVC film manufacturing tasks were substantially higher (sixfold to tenfold) than adult general population exposures; however, all daily intake estimates were less than 25% of current United States or European acceptable or tolerable daily intake estimates. Further characterization of DiNP occupational exposures in other industries is recommended.