120 resultados para lipid bodies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing of human bodies is important in social life and for the recognition of another person's actions, moods, and intentions. Recent neuroimaging studies on mental imagery of human body parts suggest that the left hemisphere is dominant in body processing. However, studies on mental imagery of full human bodies reported stronger right hemisphere or bilateral activations. Here, we measured functional magnetic resonance imaging during mental imagery of bilateral partial (upper) and full bodies. Results show that, independently of whether a full or upper body is processed, the right hemisphere (temporo-parietal cortex, anterior parietal cortex, premotor cortex, bilateral superior parietal cortex) is mainly involved in mental imagery of full or partial human bodies. However, distinct activations were found in extrastriate cortex for partial bodies (right fusiform face area) and full bodies (left extrastriate body area). We propose that a common brain network, mainly on the right side, is involved in the mental imagery of human bodies, while two distinct brain areas in extrastriate cortex code for mental imagery of full and upper bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partitioning of proteins in cholesterol and sphingolipid enriched plasma membrane microdomains, called lipid rafts, is critical for many signal transduction and protein sorting events. Although raft partitioning of many signaling molecules remains to be determined, glycosylphosphatidyl-inositol (GPI)-anchored proteins possess high affinity for lipid rafts and are currently exploited as markers to investigate fundamental mechanisms in protein sorting and signal transduction events. In this study, we demonstrate that two recombinant GPI-anchored green fluorescent proteins (GFP-GPIs) that differ in their GPI signal sequence confer distinct localization in plasma membrane microdomains. GFP fused to the GPI signal of the decay accelerating factor GFP-GPI(DAF) partitioned exclusively in lipid rafts, whereas GFP fused to the GPI signal of TRAIL-R3, GFP-GPI(TRAIL-R3), associated only minimally with microdomains. In addition, we investigated the unique ability of purified GFP-GPIs to insert into membrane microdomains of primary lymphocytes. This cell surface painting allows rapid, stable, and functional association of the GPI-anchored proteins with the target cell plasma membrane. The distinct membrane localization of the two GFP-GPIs was observed irrespective of whether the GPI-anchored molecules were painted or transfected. Furthermore, we show that painted GFP-GPI(DAF) was totally dependent on the GPI anchor and that the membrane insertion was increased by the addition of raft-associated lipids such as cholesterol, sphingomyelin, and dipalmitoyl-phosphatidylethanolamine. Thus, this study provides evidence that different GPI signal sequences lead to distinct membrane microdomain localization and that painted GFP-GPI(DAF) serves as an excellent fluorescent marker for lipid rafts in live cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drusen, the white yellowish deposits that can be seen in funduscopy, are a hallmark of age-related macular degeneration. Histologically, drusen are believed to be dome-shaped or more confluent lipid accumulations between the retinal pigment epithelium and the choriocapillaries. Recent advances in mouse funduscopy have revealed the presence of drusen-like structures in chemokine knockout animals in the absence of sizeable dome-shaped material below the retinal pigment epithelium. We show that aged CX3CR1-/- mice present with drusen-like appearance in funduscopy that is associated with a progressive age-related microglial cell accumulation in the subretinal space. We demonstrate that the anatomical equivalent of the drusen-like appearance in these mice are lipid-bloated subretinal microglial cells rather than subretinal pigment epithelium deposits [Combadière C, et al: J Clin Invest 2007;117:2920-2928].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are lipid-activated transcription factors that belong to the steroid/thyroid/retinoic acid receptor superfamily. All their characterized target genes encode proteins that participate in lipid homeostasis. The recent finding that antidiabetic thiazolidinediones and adipogenic prostanoids are ligands of one of the PPARs reveals a novel signaling pathway that directly links these compounds to processes involved in glucose homeostasis and lipid metabolism including adipocyte differentiation. A detailed understanding of this pathway could designate PPARs as targets for the development of novel efficient treatments for several metabolic disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: 2013 AHA/ACC guidelines on the treatment of cholesterol advised to tailor high-intensity statin after ACS, while previous ATP-III recommended titration of statin to reach low-density lipoprotein cholesterol (LDL-C) targets. We simulated the impact of this change of paradigm on the achievement of recommended targets. METHODS: Among a prospective cohort study of consecutive patients hospitalized for ACS from 2009 to 2012 at four Swiss university hospitals, we analyzed 1602 patients who survived one year after recruitment. Targets based on the previous guidelines approach was defined as (1) achievement of LDL-C target < 1.8 mmol/l, (2) reduction of LDL-C ≥ 50% or (3) intensification of statin in patients who did not reach LDL-C targets. Targets based on the 2013 AHA/ACC guidelines approach was defined as the maximization of statin therapy at high-intensity in patients aged ≤75 years and moderate- or high-intensity statin in patients >75 years. RESULTS: 1578 (99%) patients were prescribed statin at discharge, with 1120 (70%) at high-intensity. 1507 patients (94%) reported taking statin at one year, with 909 (57%) at high-intensity. Among 482 patients discharged with sub-maximal statin, intensification of statin was only observed in 109 patients (23%). 773 (47%) patients reached the previous LDL-C targets, while 1014 (63%) reached the 2013 AHA/ACC guidelines targetsone year after ACS (p value < 0.001). CONCLUSION: The application of the new 2013 AHA/ACC guidelines criteria would substantially increase the proportion of patients achieving recommended lipid targets one year after ACS. Clinical trial number, NCT01075868.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: It has been reported that a high protein diet improves insulin sensitivity and reduces ectopic lipids in animals and humans with the metabolic syndrome. We therefore tested the hypothesis that a high dietary protein content may stimulate whole body lipid oxidation and alter post-prandial triglyceride (TG) after fructose ingestion. METHODS: The post-prandial metabolism of 8 young males was studied after two 6-day periods of hyper-energetic, high fructose diet (HiFruD), and after two 6-day periods of hyper-energetic high fructose high protein diet (HiFruHiProD). The order with which these periods were applied was randomized. At the end of each period, either a low protein, (13)C fructose test meal (Fru meal) or a high protein, (13)C fructose test meal (HiPro Fru meal) was administered. This resulted in the monitoring of metabolic parameters at 4 occasions in random order: a) with Fru meal ingested after HiFruD, b) with HiPro Fru meal ingested after HiFruD, c) with Fru meal ingested after HiFruHiProD or d) with HiPro Fru meal ingested after HiFruHiProD. On each occasion, post-prandial TG concentrations were monitored, energy expenditure and substrate metabolism were measured by indirect calorimetry, and fructose-induced gluconeogenesis was evaluated by measuring plasma (13)C-labeled glucose. RESULTS: TG responses to fructose ingestion were significantly higher after a hyper-energetic HiFruHiProD and after HiPro Fru meals than after a Fru meal ingested after a hyper-energetic HiFruD. Compared to low protein meals, high protein meals increased post-prandial energy expenditure, inhibited post-prandial lipid oxidation, and enhanced fructose-induced gluconeogenesis. These effects were similar with HiFruD and HiFruHiProD. CONCLUSIONS: Dietary proteins did not increase lipid oxidation and increased fructose-induced post-prandial TG in healthy humans fed an hyper-energetic, high fructose diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tocopherols (vitamin E) are lipophilic antioxidants that are synthesized by all plants and are particularly abundant in seeds. Two tocopherol-deficient mutant loci in Arabidopsis thaliana were used to examine the functions of tocopherols in seedlings: vitamin e1 (vte1), which accumulates the pathway intermediate 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ); and vte2, which lacks all tocopherols and pathway intermediates. Only vte2 displayed severe seedling growth defects, which corresponded with massively increased levels of the major classes of nonenzymatic lipid peroxidation products: hydroxy fatty acids, malondialdehyde, and phytoprostanes. In the absence of pathogens, the phytoalexin camalexin accumulated in vte2 seedlings to levels 100-fold higher than in wild-type or vte1 seedlings. Similarly, gene expression profiling in wild-type, vte1, and vte2 seedlings indicated that increased levels of nonenzymatic lipid peroxidation in vte2 corresponded to increased expression of many defense-related genes, which were not induced in vte1. Both biochemical and transcriptional analyses of vte2 seedlings indicate that nonenzymatic lipid peroxidation plays a significant role in modulating plant defense responses. Together, these results establish that tocopherols in wild-type plants or DMPBQ in vte1 plants limit nonenzymatic lipid peroxidation during germination and early seedling development, thereby preventing the inappropriate activation of transcriptional and biochemical defense responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: High fructose consumption is suspected to be causally linked to the epidemics of obesity and metabolic disorders. In rodents, fructose leads to insulin resistance and ectopic lipid deposition. In humans, the effects of fructose on insulin sensitivity remain debated, whereas its effect on ectopic lipids has never been investigated. OBJECTIVE: We assessed the effect of moderate fructose supplementation on insulin sensitivity (IS) and ectopic lipids in healthy male volunteers (n = 7). DESIGN: IS, intrahepatocellular lipids (IHCL), and intramyocellular lipids (IMCL) were measured before and after 1 and 4 wk of a high-fructose diet containing 1.5 g fructose . kg body wt(-1) . d(-1). Adipose tissue IS was evaluated from nonesterified fatty acid suppression, hepatic IS from suppression of hepatic glucose output (6,6-2H2-glucose), and muscle IS from the whole-body glucose disposal rate during a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H magnetic resonance spectroscopy. RESULTS: Fructose caused significant (P < 0.05) increases in fasting plasma concentrations of triacylglycerol (36%), VLDL-triacylglycerol (72%), lactate (49%), glucose (5.5%), and leptin (48%) without any significant changes in body weight, IHCL, IMCL, or IS. IHCL were negatively correlated with triacylglycerol after 4 wk of the high-fructose diet (r = -0.78, P < 0.05). CONCLUSION: Moderate fructose supplementation over 4 wk increases plasma triacylglycerol and glucose concentrations without causing ectopic lipid deposition or insulin resistance in healthy humans.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that are involved in many physiological processes, such as inflammation and energy homeostasis. In general, PPARs must be activated by ligands to stimulate the expression of their target genes. These agonists can be synthetic molecules, such as drugs used to treat hypertriglyceridemia and insulin resistance, or natural physiological ligands, such as fatty acids and eicosanoids. Although recent work has uncovered a surprisingly broad variety of natural molecules capable of activating PPARs, relatively little is known about their mode of action in an in vivo physiological context. The action of physiological ligands in situations of food deprivation and abundance, especially with respect to their intervention in the inflammatory response, and in both lipid homeostasis and inflammation resolution will be reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le corps humain est l'objet privilégié d'action de la médecine, mais aussi réalité vécue, image, symbole, représentation et l'objet d'interprétation et de théorisation. Tous ces éléments constitutifs du corps influencent la façon dont la médecine le traite. Dans cette série de trois articles, nous abordons le corps sous différentes perspectives : médicale (1), phénoménologique (2), psychosomatique et socio-anthropologique (3). Ce premier article traite des représentations du corps en médecine, dont nous décrivons quatre types distincts, qui renvoient à autant de démarches scientifiques spécifiques et de formes de légitimité clinique : le corps-objet de l'anatomie, le corps-machine de la physiologie, le corps cybernétique de la biologie et le corps statistique de l'épidémiologie. The human body is the object upon which medicine is acting, but also lived reality, image, symbol, representation and the object of elaboration and theory. All these elements which constitute the body influence the way medicine is treating it. In this series of three articles, we address the human body from various perspectives: medical (1), phenomenological (2), psychosomatic and socio-anthropological (3). This first article discusses four distinct types of representation of the body within medicine, each related to a specific epistemology and shaping a distinct kind of clinical legitimacy: the body-object of anatomy, the body-machine of physiology, the cybernetic body of biology, the statistical body of epidemiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The V-ATPase V(0) sector associates with the peripheral V(1) sector to form a proton pump. V(0) alone has an additional function, facilitating membrane fusion in the endocytic and late exocytic pathways. V(0) contains a hexameric proteolipid cylinder, which might support fusion as proposed in proteinaceous pore models. To test this, we randomly mutagenized proteolipids. We recovered alleles that preserve proton translocation, normal SNARE activation and trans-SNARE pairing but that impair lipid and content mixing. Critical residues were found in all subunits of the proteolipid ring. They concentrate within the bilayer, close to the ring subunit interfaces. The fusion-impairing proteolipid substitutions stabilize the interaction of V(0) with V(1). Deletion of the vacuolar v-SNARE Nyv1 has the same effect, suggesting that both types of mutations similarly alter the conformation of V(0). Also covalent linkage of subunits in the proteolipid cylinder blocks vacuole fusion. We propose that a SNARE-dependent conformational change in V(0) proteolipids might stimulate fusion by creating a hydrophobic crevice that promotes lipid reorientation and formation of a lipidic fusion pore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyacids naturally synthesized in bacteria as a carbon reserve. PHAs have properties of biodegradable thermoplastics and elastomers and their synthesis in crop plants is seen as an attractive system for the sustained production of large amounts of polymers at low cost. A variety of PHAs having different physical properties have now been synthesized in a number of transgenic plants, including Arabidopsis thaliana, rape and corn. This has been accomplished through the creation of novel metabolic pathways either in the cytoplasm, plastid or peroxisome of plant cells. Beyond its impact in biotechnology, PHA production in plants can also be used to study some fundamental aspects of plant metabolism. Synthesis of PHA can be used both as an indicator and a modulator of the carbon flux to pathways competing for common substrates, such as acetyl-coenzyme A in fatty acid biosynthesis or 3-hydroxyacyl-coenzyme A in fatty acid degradation. Synthesis of PHAs in plant peroxisome has been used to demonstrate changes in the flux of fatty acids to the beta-oxidation cycle in transgenic plants and mutants affected in lipid biosynthesis, as well as to study the pathway of degradation of unusual fatty acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review summarizes the rationale for personalized exercise training in obesity and diabetes, targeted at the level of maximal lipid oxidation as can be determined by exercise calorimetry. This measurement is reproducible and reflects muscles' ability to oxidize lipids. Targeted training at this level is well tolerated, increases the ability to oxidize lipids during exercise and improves body composition, lipid and inflammatory status, and glycated hemoglobin, thus representing a possible future strategy for exercise prescription in patients suffering from obesity and diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how plants sense and respond to heat stress is central to improve crop tolerance and productivity. Recent findings in Physcomitrella patensdemonstrated that the controlled passage of calcium ions across the plasma membrane regulates the heat shock response (HSR). To investigate the effect of membrane lipid composition on the plant HSR, we acclimated P. patens to a slightly elevated yet physiological growth temperature and analysed the signature of calcium influx under a mild heat shock. Compared to tissues grown at 22°C, tissues grown at 32°C had significantly higher overall membrane lipid saturation level and, when submitted to a short heat shock at 35°C, displayed a noticeably reduced calcium influx and a consequent reduced heat shock gene expression. These results show that temperature differences, rather than the absolute temperature, determine the extent of the plant HSR and indicate that membrane lipid composition regulates the calcium-dependent heat-signaling pathway.