105 resultados para implicit relations of spatial neighborhood


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of proximal olfactory cues on place learning and memory was tested in two different spatial tasks. Rats were trained to find a hole leading to their home cage or a single food source in an array of petri dishes. The two apparatuses differed both by the type of reinforcement (return to the home cage or food reward) and the local characteristics of the goal (masked holes or salient dishes). In both cases, the goal was in a fixed location relative to distant visual landmarks and could be marked by a local olfactory cue. Thus, the position of the goal was defined by two sets of redundant cues, each of which was sufficient to allow the discrimination of the goal location. These experiments were conducted with two strains of hooded rats (Long-Evans and PVG), which show different speeds of acquisition in place learning tasks. They revealed that the presence of an olfactory cue marking the goal facilitated learning of its location and that the facilitation persisted after the removal of the cue. Thus, the proximal olfactory cue appeared to potentiate learning and memory of the goal location relative to distant environmental cues. This facilitating effect was only detected when the expression of spatial memory was not already optimal, i.e., during the early phase of acquisition. It was not limited to a particular strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a weighted spatial network, as specified by an exchange matrix, the variances of the spatial values are inversely proportional to the size of the regions. Spatial values are no more exchangeable under independence, thus weakening the rationale for ordinary permutation and bootstrap tests of spatial autocorrelation. We propose an alternative permutation test for spatial autocorrelation, based upon exchangeable spatial modes, constructed as linear orthogonal combinations of spatial values. The coefficients obtain as eigenvectors of the standardised exchange matrix appearing in spectral clustering, and generalise to the weighted case the concept of spatial filtering for connectivity matrices. Also, two proposals aimed at transforming an acessibility matrix into a exchange matrix with with a priori fixed margins are presented. Two examples (inter-regional migratory flows and binary adjacency networks) illustrate the formalism, rooted in the theory of spectral decomposition for reversible Markov chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exchange matrices represent spatial weights as symmetric probability distributions on pairs of regions, whose margins yield regional weights, generally well-specified and known in most contexts. This contribution proposes a mechanism for constructing exchange matrices, derived from quite general symmetric proximity matrices, in such a way that the margin of the exchange matrix coincides with the regional weights. Exchange matrices generate in turn diffusive squared Euclidean dissimilarities, measuring spatial remoteness between pairs of regions. Unweighted and weighted spatial frameworks are reviewed and compared, regarding in particular their impact on permutation and normal tests of spatial autocorrelation. Applications include tests of spatial autocorrelation with diagonal weights, factorial visualization of the network of regions, multivariate generalizations of Moran's I, as well as "landscape clustering", aimed at creating regional aggregates both spatially contiguous and endowed with similar features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(1) The common shrew Sorex araneus and Millet's shrew S. coronatus are sibling species.They are morphologically and genetically very similar but do not hybridize. Their parapatric distribution throughout south-western Europe, with a few narrow zones of distributional overlap, suggests that they are in competitive parapatry. (2) Two of these contact zones were studied; there was evidence of coexistence over periods of 2 years as well as habitat segregation. In both zones, the species segregated on litter thickness and humidity variables. (3) A simple analysis of spatial distribution showed that habitats visible in the field corresponded to the habitats selected by the species. Habitat selection was found throughout the annual life-cycle of the shrews. (4) In one contact zone, a removal experiment was performed to test whether habitat segregation is induced by interspecific interactions. The experiment showed that the species select habitats differentially when both are present and abandon habitat selection when their competitor is removed. (5) These results confirm the role of resource partitioning in promoting narrow rangesof distributional overlap between such parapatric species and qualitatively support the prediction of habitat selection theory that, in a two-species system, coexistence may be achieved by differential habitat selection to avoid competition. The results also support the view that the common shrew and Millet's shrew are in competitive parapatry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of behaviour are increasingly focusing on acquisition of traits through cultural inheritance. Comparison of patterns of spatial population structure (FST) between neutral genetic loci and behavioural or cultural traits can been used to test hypotheses about demography, life history, and the mechanisms of inheritance/transmission of these traits in humans, chimpanzees and other animals. Here, we develop analytical expectations to show how FST in cultural traits can differ strongly from that measured at neutral genetic markers if migration is largely restricted to one sex but social learning is predominantly modelled on the other (e.g. males migrate, females serve as models for cultural traits), if one individual is the learning model for many, or if rates of innovation (individual learning) are high or rates of social learning are low. We discuss how comparisons of FST between genetic loci and behavioural traits can be applied to evaluate the importance of innovation in shaping patterns of cultural differentiation, as even low rates of innovation can considerably reduce FST, relative to observed structure at neutral genetic loci. Our results also suggest that differentiation in neutral cultural traits should occur over much smaller scales in species with male migration and female enculturation (or the reverse).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perceiving injustice is a key antecedent of a large range of undesirable employee attitudes and behaviors at work. For example, research has shown that employees who perceive their workplace as unfair are less satisfied, less committed and engage in more counterproductive behaviors. In this study, we suggest that justice motives like the belief in a just world (BJW) contribute to explaining relations between justice perceptions and undesirable behaviors. Specifically, we propose that individual differences in BJW (i.e, the belief that the world is just, where everyone is rewarded for his or her behavior) are related to work-related behaviors and attitudes by coloring perceptions of workplace fairness. We investigated our hypotheses in a survey study with 176 employees of various organizations (36% women; mean tenure 12.3 yeares). Results showed that after controlling for other influencing factors (e.g., neuroticism) BJW was negatively related to self-reported work deviant behaviors and to cynical, disillusioned attitudes toward the current job. Moreover, BJW was positively related to overall job satisfaction. Consistent with our expectations, relations of BJW with deviant behaviors and with attitudes were mediated by perceptions of interactional and procedural justice. These results suggest extending models of justice and deviance by including motives such as BJW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Question: How do clonal traits of a locally dominant grass (Elymus repens (L.) Gould.) respond to soil heterogeneity and shape spatial patterns of its tillers? How do tiller spatial patterns constrain seedling recruitment within the community?Locations: Artificial banks of the River Rhone, France.Material and Methods: We examined 45 vegetation patches dominated by Elymus repens. During a first phase we tested relationships between soil variables and three clonal traits (spacer length, number of clumping tillers and branching rate), and between the same clonal traits and spatial patterns (i.e. density and degree of spatial aggregation) of tillers at a very fine scale. During a second phase, we performed a sowing experiment to investigate effects of density and spatial patterns of E. repens on recruitment of eight species selected from the regional species pool.Results: Clonal traits had clear effects - especially spacer length - on densification and aggregation of E. repens tillers and, at the same time, a clear response of these same clonal traits as soil granulometry changed. The density and degree of aggregation of E. repens tillers was positively correlated to total seedling cover and diversity at the finest spatial scales.Conclusions: Spatial patterning of a dominant perennial grass responds to soil heterogeneity through modifications of its clonal morphology as a trade-off between phalanx and guerrilla forms. In turn, spatial patterns have strong effects on abundance and diversity of seedlings. Spatial patterns of tillers most probably led to formation of endogenous gaps in which the recruitment of new plant individuals was enhanced. Interestingly, we also observed more idiosyncratic effects of tiller spatial patterns on seedling cover and diversity when focusing on different growth forms of the sown species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(1) The common shrew Sorex araneus and Millet's shrew S. coronatusare sibling species.They are morphologically and genetically very similar but do not hybridize.Their parapatric distribution throughout south-western Europe, with a few narrow zones of distributional overlap, suggests that they are in competitive parapatry. (2) Two of these contact zones were studied; there was evidence of coexistence over periods of 2 years as well as habitat segregation. In both zones, the species segregated on litter thickness and humidity variables. (3) A simple analysis of spatial distribution showed that habitats visible in the field corresponded to the habitats selected by the species. Habitat selection was found throughout the annual life-cycle of the shrews. (4) In one contact zone, a removal experiment was performed to test whether habitat segregation is induced by interspecific interactions. The experiment showed that the species select habitats differentially when both are present and abandon habitat selection when their competitor removed. (5)These results confirm the role of resource partitioning in promoting narrow ranges of distributional overlap between such parapatric species and qualitatively support the prediction of habitat selection theory that, in a two-species system, coexistence may be achieved by differential habitat selection to avoid competition. The results also support the view that the common shrew and Millet's shrew are in competitive parapatry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research studies the spatial patterns of the distribution of the Swiss population (DSP). This description is carried out using a wide variety of global spatial structural analysis tools such as topological, statistical and fractal measures, which enable the estimation of the spatial degree of clustering of a point pattern. A particular attention is given to the analysis of the multifractality to characterize the spatial structure of the DSP at different scales. This will be achieved by measuring the generalized q-dimensions and the singularity spectrum. This research is based on high quality data of the Swiss Population Census of the Year 2000 at a hectometric resolution (grid 100 x 100 m) issued by the Swiss Federal Statistical Office (FSO).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Structure of the Thesis In the first article, I focus on the context in which the Homo Economicus was constructed - i.e., the conception of economic actors as fully rational, informed, egocentric, and profit-maximizing. I argue that the Homo Economicus theory was developed in a specific societal context with specific (partly tacit) values and norms. These norms have implicitly influenced the behavior of economic actors and have framed the interpretation of the Homo Economicus. Different factors however have weakened this implicit influence of the broader societal values and norms on economic actors. The result is an unbridled interpretation and application of the values and norms of the Homo Economicus in the business environment, and perhaps also in the broader society. In the second article, I show that the morality of many economic actors relies on isomorphism, i.e., the attempt to fit into the group by adopting the moral norms surrounding them. In consequence, if the norms prevailing in a specific group or context (such as a specific region or a specific industry) change, it can be expected that actors with an 'isomorphism morality' will also adapt their ethical thinking and their behavior -for the 'better' or for the 'worse'. The article further describes the process through which corporations could emancipate from the ethical norms prevailing in the broader society, and therefore develop an institution with specific norms and values. These norms mainly rely on mainstream business theories praising the economic actor's self-interest and neglecting moral reasoning. Moreover, because of isomorphism morality, many economic actors have changed their perception of ethics, and have abandoned the values prevailing in the broader society in order to adopt those of the economic theory. Finally, isomorphism morality also implies that these economic actors will change their morality again if the institutional context changes. The third article highlights the role and responsibility of business scholars in promoting a systematic reflection and self-critique of the business system and develops alternative models to fill the moral void of the business institution and its inherent legitimacy crisis. Indeed, the current business institution relies on assumptions such as scientific neutrality and specialization, which seem at least partly challenged by two factors. First, self-fulfilling prophecy provides scholars with an important (even if sometimes undesired) normative influence over practical life. Second, the increasing complexity of today's (socio-political) world and interactions between the different elements constituting our society question the strong specialization of science. For instance, economic theories are not unrelated to psychology or sociology, and economic actors influence socio-political structures and processes, e.g., through lobbying (Dobbs, 2006; Rondinelli, 2002), or through marketing which changes not only the way we consume, but more generally tries to instill a specific lifestyle (Cova, 2004; M. K. Hogg & Michell, 1996; McCracken, 1988; Muniz & O'Guinn, 2001). In consequence, business scholars are key actors in shaping both tomorrow's economic world and its broader context. A greater awareness of this influence might be a first step toward an increased feeling of civic responsibility and accountability for the models and theories developed or taught in business schools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.