102 resultados para hook selectivity
Resumo:
We have developed a thrombin-sensitive polymeric photosensitizer prodrug (T-PS) to selectively image and eradicate inflammatory lesions in rheumatoid arthritis (RA). Thrombin is a serine protease up-regulated in synovial tissues of rheumatoid arthritis (RA) patients. T-PS consists of a polymeric backbone, to which multiple photosensitizer (PS) units are tethered via short thrombin-cleavable peptide linkers. Fluorescence emission and phototoxicity of the prodrug are efficiently quenched due to the interaction of neighboring photosensitizer units. The prodrug is passively delivered to the inflammation site via the enhanced permeability and retention (EPR) effect. Subsequent site-selective proteolytic cleavage of the peptide linkers restores its photoactivity by increasing the mutual distance between PS. Whole animal imaging in murine collagen-induced arthritis, an experimental model of RA revealed a dose-dependent fluorescence increase in arthritic paws after systemic prodrug injection. In addition, administration of T-PS resulted in much higher fluorescence selectivity for arthritic joints as compared to the free PS. Irradiation of the arthritic joints induced light dose dependent phototoxic effects such as apoptosis, vascular damage and local hemorrhage. Long-term observations showed complete regression of the latter. Irradiated non-arthritic tissues or non-irradiated arthritic tissues showed no histological effects after photodynamic therapy with T-PS. This illustrates that T-PS can localize inflammatory lesions with excellent selectivity and induce apoptosis and vascular shut down after irradiation.
Resumo:
This article describes the application of a recently developed general unknown screening (GUS) strategy based on LC coupled to a hybrid linear IT-triple quadrupole mass spectrometer (LC-MS/MS-LIT) for the simultaneous detection and identification of drug metabolites following in vitro incubation with human liver microsomes. The histamine H1 receptor antagonist loratadine was chosen as a model compound to demonstrate the interest of such approach, because of its previously described complex and extensive metabolism. Detection and mass spectral characterization were based on data-dependent acquisition, switching between a survey scan acquired in the ion-trapping Q3 scan mode with dynamic subtraction of background noise, and a dependent scan in the ion-trapping product ion scan mode of automatically selected parent ions. In addition, the MS(3) mode was used in a second step to confirm the structure of a few fragment ions. The sensitivity of the ion-trapping modes combined with the selectivity of the triple quadrupole modes allowed, with only one injection, the detection and identification of 17 phase I metabolites of loratadine. The GUS procedure used in this study may be applicable as a generic technique for the characterization of drug metabolites after in vitro incubation, as well as probably in vivo experiments.
Resumo:
Background: Familial Hemiplegic Migraine (FHM), characterized by a prolonged unilateral hemiparesis, mainly results from mutations in the alpha-1a subunit of the calcium channel gene CACNA1A that can also cause two other dominantly inherited neurological disorders, Episodic Ataxia type 2 (EA2, with sometimes migrainous headaches) and Spinocerebellar Ataxia type 6 (SCA6, late-onset and progressive). A same mutation can have different clinical expression in a family (hemiplegic migraine, migraine-coma, cerebellar ataxia). CACNA1A mutations in FHM are usually missense, leading to gain-of-function, while truncating mutations leading to loss-of-function are usually associated with EA2. Case report: This 9-year-old girl was seen as a baby for hypotonia and transient vertical nystagmus. Her first brain MRI was normal. She evolved as a congenital ataxia, but since the age of two, she had attacks of coma, hemiparesis (either side), partial seizures, dystonic movements and fever. Attacks were initially triggered by minor head bumps, subsequently spontaneous. Brain MRIs in the acute stage always showed transient unilateral hemisphere swelling. Follow-up images revealed atrophic lesions in the temporo-occipital regions and cerebellar atrophy. A prophylactic trial with flunarizine was ineffective. Acetazolamide was recently introduced. Methods: Since our patient shared features of both FHM and EA2, we studied the CACNA1A gene by direct sequencing in the patient's and parents' DNA. Results: We identified an unreported de novo heterozygous deletion of three base pairs (c.4503_4505delCTT) predicting the deletion of one amino acid (p.Phe1502del). The CACNA1A protein contains 4 domains, each formed by six transmembrane segments. The deletion is located in a highly conserved region in segment 6 (S6) of the third domain. Mutations in S6 segments of calcium channels change single-channel conductance and channel selectivity, most resulting in loss-of-function. Outlook: In vitro expression studies of the identified mutation are underway, aiming at understanding its functional consequences and finding an efficient treatment.
Resumo:
MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) family member CIITA, which is recruited to SXY enhancers of MHCII promoters via a DNA-binding "enhanceosome" complex. NLRC5, another NLR protein, was recently found to control transcription of MHC class I (MHCI) genes. However, detailed understanding of NLRC5's target gene specificity and mechanism of action remained lacking. We performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-regulated genes. In addition to classical MHCI genes, we exclusively identified novel targets encoding non-classical MHCI molecules having important functions in immunity and tolerance. ChIP-sequencing performed with Rfx5(-/-) cells, which lack the pivotal enhanceosome factor RFX5, demonstrated its strict requirement for NLRC5 recruitment. Accordingly, Rfx5-knockout mice phenocopy Nlrc5 deficiency with respect to defective MHCI expression. Analysis of B cell lines lacking RFX5, RFXAP, or RFXANK further corroborated the importance of the enhanceosome for MHCI expression. Although recruited by common DNA-binding factors, CIITA and NLRC5 exhibit non-redundant functions, shown here using double-deficient Nlrc5(-/-)CIIta(-/-) mice. These paradoxical findings were resolved by using a "de novo" motif-discovery approach showing that the SXY consensus sequence occupied by NLRC5 in vivo diverges significantly from that occupied by CIITA. These sequence differences were sufficient to determine preferential occupation and transactivation by NLRC5 or CIITA, respectively, and the S box was found to be the essential feature conferring NLRC5 specificity. These results broaden our knowledge on the transcriptional activities of NLRC5 and CIITA, revealing their dependence on shared enhanceosome factors but their recruitment to distinct enhancer motifs in vivo. Furthermore, we demonstrated selectivity of NLRC5 for genes encoding MHCI or related proteins, rendering it an attractive target for therapeutic intervention. NLRC5 and CIITA thus emerge as paradigms for a novel class of transcriptional regulators dedicated for transactivating extremely few, phylogenetically related genes.
Resumo:
The aim of this work is to present a new concept, called on-line desorption of dried blood spots (on-line DBS), allowing the direct analysis of a dried blood spot coupled to liquid chromatography mass spectrometry device (LC/MS). The system is based on an inox cell which can receive a blood sample (10 microL) previously spotted on a filter paper. The cell is then integrated into LC/MS system where the analytes are desorbed out of the paper towards a column switching system ensuring the purification and separation of the compounds before their detection on a single quadrupole MS coupled to atmospheric pressure chemical ionisation (APCI) source. The described procedure implies that no pretreatment is necessary in spite the analysis is based on whole blood sample. To ensure the applicability of the concept, saquinavir, imipramine, and verapamil were chosen. Despite the use of a small sampling volume and a single quadrupole detector, on-line DBS allowed the analyses of these three compounds over their therapeutic concentrations from 50 to 500 ng/mL for imipramine and verapamil and from 100 to 1000 ng/mL for saquinavir. Moreover, the method showed good repeatability with relative standard deviation (RSD) lower than 15% based on two levels of concentration (low and high). Function responses were found to be linear over the therapeutic concentration for each compound and were used to determine the concentrations of real patient samples for saquinavir. Comparison of the founded values with those of a validated method used routinely in a reference laboratory showed a good correlation between the two methods. Moreover, good selectivity was observed ensuring that no endogenous or chemical components interfered with the quantitation of the analytes. This work demonstrates the feasibility and applicability of the on-line DBS procedure for bioanalysis.
Resumo:
BACKGROUND: 5,10,15,20-Tetrakis(m-hydroxyphenyl)chlorin (mTHPC)-mediated photodynamic therapy (PDT) has shown insufficient tumor selectivity for the treatment of pleural mesothelioma. Tumor selectivity of mTHPC-PDT may be enhanced in the presence of the TAT-RasGAP(317-326) peptide which has the potential to specifically sensitize tumor cells to cytostatic agents. MATERIALS AND METHODS: H-meso-1 and human fibroblast cell cultures, respectively, were exposed to two different mTHPC doses followed by light delivery with and without TAT-RasGAP(317-326) administration. mTHPC was added to the cultures at a concentration of 0.04microg/ml and 0.10microg/ml, respectively, 24h before laser light illumination at 652nm (3J/cm(2), 40mW/cm(2)). TAT-RasGAP(317-326) was added to the cultures immediately after light delivery at a concentration of 20microM. The apoptosis rate was determined by scoring the cells displaying pycnotic nuclei. Cell viability was measured by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: Light delivery associated with 0.04microg/ml mTHPC resulted in a significantly higher apoptosis rate in the presence of TAT-RasGAP(317-326) than without in H-meso-1 cells (p<0.05) but not in fibroblasts. In contrast, 1.0microg/ml mTHPC and light resulted in a significantly higher apoptosis rate in both H-meso-1 cells and fibroblasts as compared to controls (p<0.05) but the addition of TAT-RasGAP(317-326) did not lead to a further significant increase of the apoptosis rate of both H-meso-1 cells and fibroblasts as compared to mTHPC and light delivery alone. CONCLUSION: TAT-RasGAP(317-326) selectively enhanced the effect of mTHPC and light delivery on H-meso-1 cells but not on fibroblasts. However, this effect was mTHPC dose-dependent and occurred only at a low sensitizer dose.
Resumo:
Objectives: αvβ3 integrin is of great interest for tumor targeting because of its high concentration in tumor tissue. It recognizes ligands containing an arginine-glycine-aspartate motif (RGD), and a number of RGD-containing peptides have been developed as PET imaging probes of angiogenesis. We synthesized a series of 18F-labeled cyclic-[RGDfK] peptides for in vivo imaging of αvβ3 expression. Our F-18 labeled prosthetic groups were attached to the αvβ3 ligand via click chemistry, and the reaction conditions (time, temperature, solvent and pH) were optimized by using single modified amino acids.Methods: Seven amino acids were selected considering their different biochemical properties (polarity, total charge, presence of aromatic ring and heteroatom). All the amino acids were modified by the introduction of azido moiety to allow the interaction with alkyne prosthetic groups. Once the conditions of the click chemistry were optimized, the prosthetic groups were also coupled with the cyclic-[RGDfK] exhibiting an azido function. 4- Trimethylammonium-nitrobenzene triflate was used as precursor for the radiosynthesis of the prosthetic groups. The fluorination was carried out with K2CO3/K2.2.2 in CH3CN at 95 oC, and the nitro group was reduced with NaBH4 and Pd/C in MeOH. The resulting 18F-aniline was subsequently coupled to alkynoic acids to yield the final F-18 labeled prosthetic groups. Finally, the prosthetic groups were attached to the peptides via Huisgen's cycloaddition. Figure 1. F-18 labeled αvβ3 ligand.Results: Our new prosthetic groups were successfully clicked to the modified amino acids and to the cyclic- [RGDfK], and the reactions were almost quantitative within 1 to 3.5 h. The pH of the reaction did not influence the reaction kinetic and yield. The four steps of the F-18 labeling were completely automated providing the final products in quantities and yields practical for PET imaging. IC50 values of our ligands for αvβ3 and α5β1 demonstrated a high selectivity of our compounds towards αvβ3, as well as the negligible effect of the prosthetic groups on the affinity of the ligand to its receptor, as confirmed by the prediction of the molecular modeling.Conclusions: We have successfully synthesized novel F-18 labeled prosthetic groups, as well as novel PET imaging probes of αvβ3 expression. The reaction conditions of the Huisgen's cycloaddition were optimized with selected modified amino acids, and subsequently transposed to the cyclic-[RGDfK] peptide. IC50 data demonstrate that our 18F-labeled ligands were selective for αvβ3. In vivo microPET/CT studies in tumor bearing mice are underway.
Resumo:
The value of earmarks as an efficient means of personal identification is still subject to debate. It has been argued that the field is lacking a firm systematic and structured data basis to help practitioners to form their conclusions. Typically, there is a paucity of research guiding as to the selectivity of the features used in the comparison process between an earmark and reference earprints taken from an individual. This study proposes a system for the automatic comparison of earprints and earmarks, operating without any manual extraction of key-points or manual annotations. For each donor, a model is created using multiple reference prints, hence capturing the donor within source variability. For each comparison between a mark and a model, images are automatically aligned and a proximity score, based on a normalized 2D correlation coefficient, is calculated. Appropriate use of this score allows deriving a likelihood ratio that can be explored under known state of affairs (both in cases where it is known that the mark has been left by the donor that gave the model and conversely in cases when it is established that the mark originates from a different source). To assess the system performance, a first dataset containing 1229 donors elaborated during the FearID research project was used. Based on these data, for mark-to-print comparisons, the system performed with an equal error rate (EER) of 2.3% and about 88% of marks are found in the first 3 positions of a hitlist. When performing print-to-print transactions, results show an equal error rate of 0.5%. The system was then tested using real-case data obtained from police forces.
Resumo:
Endocrine disruption is defined as the perturbation of the endocrine system, which includes disruption of nuclear hormone receptor signalling. Peroxisome proliferator-activated receptors (PPARs) represent a family of nuclear receptors that has not yet been carefully studied with regards to endocrine disruption, despite the fact that PPARs are known to be important targets for xenobiotics. Here we report a first comprehensive approach aimed at defining the mechanistic basis of PPAR disruption focusing on one chemical, the plasticizer monethylhexyl phthalate (MEHP), but using a variety of methodologies and models. We used mammalian cells and a combination of biochemical and live cell imaging techniques to show that MEHP binds to PPAR gamma and selectively regulates interactions with coregulators. Micro-array experiments further showed that this selectivity is translated at the physiological level during adipocyte differentiation. In that context, MEHP functions as a selective PPAR modulator regulating only a subset of PPAR gamma target genes compared to the action of a full agonist. We also explored the action of MEHP on PPARs in an aquatic species, Xenopus laevis, as many xenobiotics are found in aquatic ecosystems. In adult males, micro-array data indicated that MEHP influences liver physiology, possibly through a cross-talk between PPARs and estrogen receptors (ER). In early Xenopus laevis embryos, we showed that PPAR beta/delta exogenous activation by an agonist or by MEHP affects development. Taken together our results widen the concept of endocrine disruption by pinpointing PPARs as key factors in that process.
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides presented by class I major histocompatibility complexes (MHCs) is the determining event in the specific cellular immune response against virus-infected cells or tumor cells. It is of great interest, therefore, to elucidate the molecular principles upon which the selectivity of a TCR is based. These principles can in turn be used to design therapeutic approaches, such as peptide-based immunotherapies of cancer. In this study, free energy simulation methods are used to analyze the binding free energy difference of a particular TCR (A6) for a wild-type peptide (Tax) and a mutant peptide (Tax P6A), both presented in HLA A2. The computed free energy difference is 2.9 kcal/mol, in good agreement with the experimental value. This makes possible the use of the simulation results for obtaining an understanding of the origin of the free energy difference which was not available from the experimental results. A free energy component analysis makes possible the decomposition of the free energy difference between the binding of the wild-type and mutant peptide into its components. Of particular interest is the fact that better solvation of the mutant peptide when bound to the MHC molecule is an important contribution to the greater affinity of the TCR for the latter. The results make possible identification of the residues of the TCR which are important for the selectivity. This provides an understanding of the molecular principles that govern the recognition. The possibility of using free energy simulations in designing peptide derivatives for cancer immunotherapy is briefly discussed.
Resumo:
The study reports a set of forty proteinogenic histidine-containing dipeptides as potential carbonyl quenchers. The peptides were chosen to cover as exhaustively as possible the accessible chemical space, and their quenching activities toward 4-hydroxy-2-nonenal (HNE) and pyridoxal were evaluated by HPLC analyses. The peptides were capped at the C-terminus as methyl esters or amides to favor their resistance to proteolysis and diastereoisomeric pairs were considered to reveal the influence of configuration on quenching. On average, the examined dipeptides are less active than the parent compound carnosine (βAla + His) thus emphasizing the unfavorable effect of the shortening of the βAla residue as confirmed by the control dipeptide Gly-His. Nevertheless, some peptides show promising activities toward HNE combined with a remarkable selectivity. The results emphasize the beneficial role of aromatic and positively charged residues, while negatively charged and H-bonding side chains show a detrimental effect on quenching. As a trend, ester derivatives are slightly more active than amides while heterochiral peptides are more active than their homochiral diastereoisomer. Overall, the results reveal that quenching activity strongly depends on conformational effects and vicinal residues (as evidenced by the reported QSAR analysis), offering insightful clues for the design of improved carbonyl quenchers and to rationalize the specific reactivity of histidine residues within proteins.
Resumo:
The mouse Grueneberg ganglion (GG) is an olfactory subsystem located at the tip of the nose close to the entry of the naris. It comprises neurons that are both sensitive to cold temperature and play an important role in the detection of alarm pheromones (APs). This chemical modality may be essential for species survival. Interestingly, GG neurons display an atypical mammalian olfactory morphology with neurons bearing deeply invaginated cilia mostly covered by ensheathing glial cells. We had previously noticed their morphological resemblance with the chemosensory amphid neurons found in the anterior region of the head of Caenorhabditis elegans (C. elegans). We demonstrate here further molecular and functional similarities. Thus, we found an orthologous expression of molecular signaling elements that was furthermore restricted to similar specific subcellular localizations. Calcium imaging also revealed a ligand selectivity for the methylated thiazole odorants that amphid neurons are known to detect. Cellular responses from GG neurons evoked by chemical or temperature stimuli were also partially cGMP-dependent. In addition, we found that, although behaviors depending on temperature sensing in the mouse, such as huddling and thermotaxis did not implicate the GG, the thermosensitivity modulated the chemosensitivity at the level of single GG neurons. Thus, the striking similarities with the chemosensory amphid neurons of C. elegans conferred to the mouse GG neurons unique multimodal sensory properties.
Resumo:
Malignant pleural mesothelioma (MPM) is increasingly observed in industrial countries. Despite concerted efforts and combined treatments including surgery, chemotherapy and irradiation patients eventually succumb from relentless local progression of the disease. Recent publications have demonstrated an improved response rate with the cytostatic agent pemetrexed which will be tested in a neoadjuvant setting followed by surgery. However, effective tumor control requires new loco-regional treatment modalities, eventually in combination with neoadjuvant chemotherapy. Intraoperative photodynamic therapy (PDT) of the chest cavity has been proposed as an attractive treatment concept for MPM since a selective treatment of the tumor bed following resection has the potential to improve local tumor control. It has been shown to afford tumor destruction in patients with mesothelioma but efficiency and selectivity is not yet sufficient for routine clinical application. Experimental work on MPM has shown that tumor selectivity of PDT depend on treatment conditions and can be improved by structural modification and improved targeting of the sensitizers. Refinements of PDT for mesothelioma will depend on a more detailed understanding of the pathways for preferential sensitizer accumulation within the tumor as well as on synergistic effects between PDT and chemotherapeutic agents.
Resumo:
Aujourd'hui la PEA est devenue la méthode la plus employée dans le champ des études de mobilisation. Toutefois, il est frappant que les limites, nombreuses, de cette méthode, demeurent peu explorées, malgré une abondante littérature critique. C'est à ces questions des biais propres aux sources de presse dans le cadre de la PEA et aux moyens de les explorer que ce working paper se consacre. Nous commencerons par montrer, en deux temps, comment la question de la systématicité gagne à être explorée à partir d'enquêtes qualitatives, en nous appuyant sur un travail inédit mené naguère auprès du journal Le Monde, dans le cadre d'une recherche collective sur les transformations de l'activisme environnemental en Europe, dont les données seront comparées avec des sources de police, le dépouillement des dépêches de l'Agence France-Presse sur six mois, et surtout une série d'interviews avec des journalistes spécialisés dans l'environnement. L'on revient dans un second temps à la question de la sélectivité des sources en tentant de montrer comment dans toute une série de circonstances et pour toute une série de groupes, les luttes ne sauraient se réduire ni aux événements protestataires ni à un appel à l'Etat ou à l'opinion. L'on espère ainsi proposer des moyens de se garder d'un défaut commun à tout conventionnalisme méthodologique qui, ici comme ailleurs, frappe la recherche, soit la réitération de mesures conventionnelles ayant pour effet de les institutionnaliser en dehors de toute réflexion sur leur pertinence. Protest Events Analysis (PEA) has by no doubts become one the most used method in the field of social movement research. Yet, the numerous biases of that method have not been explored completely, despite a rich litterature. Our paper first proposes a discussion of the systematicity of biases, based on an empirical research on environmental journalists in various French newspapers and Agence France press. Secondly, we deal with the question of selectivity of biases. Finally, we propose some methodological recommendations in order to improve our understanding of social movements and to avoid methodological conventionalism.
Resumo:
A highly sensitive ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantification of buprenorphine and its major metabolite norbuprenorphine in human plasma. In order to speed up the process and decrease costs, sample preparation was performed by simple protein precipitation with acetonitrile. To the best of our knowledge, this is the first application of this extraction technique for the quantification of buprenorphine in plasma. Matrix effects were strongly reduced and selectivity increased by using an efficient chromatographic separation on a sub-2μm column (Acquity UPLC BEH C18 1.7μm, 2.1×50mm) in 5min with a gradient of ammonium formate 20mM pH 3.05 and acetonitrile as mobile phase at a flow rate of 0.4ml/min. Detection was made using a tandem quadrupole mass spectrometer operating in positive electrospray ionization mode, using multiple reaction monitoring. The procedure was fully validated according to the latest Food and Drug Administration guidelines and the Société Française des Sciences et Techniques Pharmaceutiques. Very good results were obtained by using a stable isotope-labeled internal standard for each analyte, to compensate for the variability due to the extraction and ionization steps. The method was very sensitive with lower limits of quantification of 0.1ng/ml for buprenorphine and 0.25ng/ml for norbuprenorphine. The upper limit of quantification was 250ng/ml for both drugs. Trueness (98.4-113.7%), repeatability (1.9-7.7%), intermediate precision (2.6-7.9%) and internal standard-normalized matrix effects (94-101%) were in accordance with international recommendations. The procedure was successfully used to quantify plasma samples from patients included in a clinical pharmacogenetic study and can be transferred for routine therapeutic drug monitoring in clinical laboratories without further development.