113 resultados para glycosyl phosphatidylinositol anchor (GPI)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The TRAF-interacting protein (TRIP/TRAIP) is a RING-type E3 ubiquitin ligase inhibiting tumor necrosis factor-α (TNF-α)-mediated NF-κB activation. TRIP ablation results in early embryonic lethality in mice. To investigate TRIP function in epidermis, we examined its expression and the effect of TRIP knockdown (KD) in keratinocytes. TRIP mRNA expression was strongly downregulated in primary human keratinocytes undergoing differentiation triggered by high cell density or high calcium. Short-term phorbol-12-myristate-13-acetate (TPA) treatment or inhibition of phosphatidylinositol-3 kinase signaling in proliferative keratinocytes suppressed TRIP transcription. Inhibition by TPA was protein kinase C dependent. Keratinocytes undergoing KD of TRIP expression by lentiviral short-hairpin RNA (shRNA; T4 and T5) had strongly reduced proliferation rates compared with control shRNA. Cell cycle analysis demonstrated that TRIP-KD caused growth arrest in the G1/S phase. Keratinocytes with TRIP-KD resembled differentiated cells consistent with the augmented expression of differentiation markers keratin 1 and filaggrin. Luciferase-based reporter assays showed no increase in NF-κB activity in TRIP-KD keratinocytes, indicating that NF-κB activity in keratinocytes is not regulated by TRIP. TRIP expression was increased by ∼2-fold in basal cell carcinomas compared with normal skin. These results underline the important role of TRIP in the regulation of cell cycle progression and the tight linkage of its expression to keratinocyte proliferation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myocardium undergoing remodeling in vivo exhibits insulin resistance that has been attributed to a shift from the insulin-sensitive glucose transporter GLUT4 to the fetal, less insulin-sensitive, isoform GLUT1. To elucidate the role of altered GLUT4 expression in myocardial insulin resistance, glucose uptake and the expression of the glucose transporter isoforms GLUT4 and GLUT1 were measured in adult rat cardiomyocytes (ARC). ARC in culture spontaneously undergo dedifferentiation, hypertrophy-like spreading, and return to a fetal-like gene expression pattern. Insulin stimulation of 2-deoxy-D-glucose uptake was completely abolished on day 2 and 3 of culture and recovered thereafter. Although GLUT4 protein level was reduced, the time-course of unresponsiveness to insulin did not correlate with altered expression of GLUT1 and GLUT4. However, translocation of GLUT4 to the sarcolemma in response to insulin was completely abolished during transient insulin resistance. Insulin-mediated phosphorylation of Akt was not reduced, indicating that activation of phosphatidylinositol 3-kinase (PI3K) was preserved. On the other hand, total and phosphorylated Cbl was reduced during insulin resistance, suggesting that activation of Cbl/CAP is essential for insulin-mediated GLUT4 translocation, in addition to activation of PI3K. Pharmacological inhibition of contraction in insulin-sensitive ARC reduced insulin sensitivity and lowered phosphorylated Cbl. The results suggest that transient insulin resistance in ARC is related to impairment of GLUT4 translocation. A defect in the PI3K-independent insulin signaling pathway involving Cbl seems to contribute to reduced insulin responsiveness and may be related to contractile arrest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa, N-acylhomoserine lactone signals regulate the expression of several hundreds of genes, via the transcriptional regulator LasR and, in part, also via the subordinate regulator RhlR. This regulatory network termed quorum sensing contributes to the virulence of P. aeruginosa as a pathogen. The fact that two supposed PAO1 wild-type strains from strain collections were found to be defective for LasR function because of independent point mutations in the lasR gene led to the hypothesis that loss of quorum sensing might confer a selective advantage on P. aeruginosa under certain environmental conditions. A convenient plate assay for LasR function was devised, based on the observation that lasR mutants did not grow on adenosine as the sole carbon source because a key degradative enzyme, nucleoside hydrolase (Nuh), is positively controlled by LasR. The wild-type PAO1 and lasR mutants showed similar growth rates when incubated in nutrient yeast broth at pH 6.8 and 37 degrees C with good aeration. However, after termination of growth during 30 to 54 h of incubation, when the pH rose to > or = 9, the lasR mutants were significantly more resistant to cell lysis and death than was the wild type. As a consequence, the lasR mutant-to-wild-type ratio increased about 10-fold in mixed cultures incubated for 54 h. In a PAO1 culture, five consecutive cycles of 48 h of incubation sufficed to enrich for about 10% of spontaneous mutants with a Nuh(-) phenotype, and five of these mutants, which were functionally complemented by lasR(+), had mutations in lasR. The observation that, in buffered nutrient yeast broth, the wild type and lasR mutants exhibited similar low tendencies to undergo cell lysis and death suggests that alkaline stress may be a critical factor providing a selective survival advantage to lasR mutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After an injury, keratinocytes acquire the plasticity necessary for the reepithelialization of the wound. Here, we identify a novel pathway by which a nuclear hormone receptor, until now better known for its metabolic functions, potentiates cell migration. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) enhances two phosphatidylinositol 3-kinase-dependent pathways, namely, the Akt and the Rho-GTPase pathways. This PPARbeta/delta activity amplifies the response of keratinocytes to a chemotactic signal, promotes integrin recycling and remodeling of the actin cytoskeleton, and thereby favors cell migration. Using three-dimensional wound reconstructions, we demonstrate that these defects have a strong impact on in vivo skin healing, since PPARbeta/delta-/- mice show an unexpected and rare epithelialization phenotype. Our findings demonstrate that nuclear hormone receptors not only regulate intercellular communication at the organism level but also participate in cell responses to a chemotactic signal. The implications of our findings may be far-reaching, considering that the mechanisms described here are important in many physiological and pathological situations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AKAP-Lbc is a member of the A-kinase anchoring protein (AKAP) family that has been recently associated with the development of pathologies, such as cardiac hypertrophy and cancer. We have previously demonstrated that, at the molecular level, AKAP-Lbc functions as a guanine nucleotide exchange factor (GEF) that promotes the specific activation of RhoA. In the present study, we identified the ubiquitin-like protein LC3 as a novel regulatory protein interacting with AKAP-Lbc. Mutagenesis studies revealed that LC3, through its NH(2)-terminal alpha-helical domain, interacts with two binding sites located within the NH(2)-terminal regulatory region of AKAP-Lbc. Interestingly, LC3 overexpression strongly reduced the ability of AKAP-Lbc to interact with RhoA, profoundly impairing the Rho-GEF activity of the anchoring protein and, as a consequence, its ability to promote cytoskeletal rearrangements associated with the formation of actin stress fibers. Moreover, AKAP-Lbc mutants that fail to interact with LC3 show a higher basal Rho-GEF activity as compared with the wild type protein and become refractory to the inhibitory effect of LC3. This suggests that LC3 binding maintains AKAP-Lbc in an inactive state that displays a reduced ability to promote downstream signaling. Collectively, these findings provide evidence for a previously uncharacterized role of LC3 in the regulation of Rho signaling and in the reorganization of the actin cytoskeleton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To investigate the ability of fibroblast growth factor (FGF) 2-saporin to prevent lens regrowth in the rabbit. METHODS: Chemically conjugated and genetically fused FGF2-saporin (made in Escherichia coli) were used. Extracapsular extraction of the lens was performed on the rabbit, and the cytotoxin either was injected directly into the capsule bag or was administered by FGF2-saporin-coated, heparin surface-modified (HSM) polymethylmethacrylate intraocular lenses. The potential of the conjugate was checked by slit lamp evaluation of capsular opacification and by measuring crystallin synthesis. Toxin diffusion and sites of toxin binding were assessed by immunohistochemistry. Possible toxicity was determined by histologic analysis of ocular tissues. RESULTS: FGF2-saporin effectively inhibited lens regrowth when it was injected directly into the capsular bag. However, high concentration of the toxin induced transient corneal edema and loss of pigment in the iris. Intraocular lenses coated with FGF2-saporin reduced lens regrowth and crystallin synthesis without any detectable clinical side effect. After implantation, FGF2-saporin was shown to have bound to the capsules and, to a lesser extent, to the iris; no histologic damage was found on ocular tissues as a result of implantation of drug-loaded HSM intraocular lenses. CONCLUSIONS: Chemically conjugated (FGF2-SAP) and genetically fused FGF2-saporin (rFGF2-SAP) bound to HSM intraocular lenses can prevent lens regrowth in the rabbit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. TRAIL-induced apoptosis is mediated by the transmembrane receptors death receptor 4 (DR4) (also known as TRAIL-R1) and DR5 (TRAIL-R2). TRAIL can also bind decoy receptor 1 (DcR1) (TRAIL-R3) and DcR2 (TRAIL-R4) that fail to induce apoptosis since they lack and have a truncated cytoplasmic death domain, respectively. In addition, DcR1 and DcR2 inhibit DR4- and DR5-mediated, TRAIL-induced apoptosis and we demonstrate here that this occurs through distinct mechanisms. While DcR1 prevents the assembly of the death-inducing signaling complex (DISC) by titrating TRAIL within lipid rafts, DcR2 is corecruited with DR5 within the DISC, where it inhibits initiator caspase activation. In addition, DcR2 prevents DR4 recruitment within the DR5 DISC. The specificity of DcR1- and DcR2-mediated TRAIL inhibition reveals an additional level of complexity for the regulation of TRAIL signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective-Inflammation and proteolysis crucially contribute to myocardial ischemia and reperfusion injury. The extracellular matrix metalloproteinase inducer EMMPRIN (CD147) and its ligand cyclophilin A (CyPA) may be involved in both processes. The aim of the study was to characterize the role of the CD147 and CyPA interplay in myocardial ischemia/reperfusion (I/R) injury.Methods and Results-Immunohistochemistry showed enhanced expression of CD147 and CyPA in myocardial sections from human autopsies of patients who had died from acute myocardial infarction and from mice at 24 hours after I/R. At 24 hours and 7 days after I/R, the infarct size was reduced in CD147(+/-) mice vs CD147(+/+) mice (C57Bl/6), in mice (C57Bl/6) treated with monoclonal antibody anti-CD147 vs control monoclonal antibody, and in CyPA(-/-) mice vs CyPA(+/+) mice (129S6/SvEv), all of which are associated with reduced monocyte and neutrophil recruitment at 24 hours and with a preserved systolic function at 7 days. The combination of CyPA(-/-) mice with anti-CD147 treatment did not yield further protection compared with either inhibition strategy alone. In vitro, treatment with CyPA induced monocyte chemotaxis in a CD147-and phosphatidylinositol 3-kinase-dependent manner and induced monocyte rolling and adhesion to endothelium (human umbilical vein endothelial cells) under flow in a CD147-dependent manner.Conclusion-CD147 and its ligand CyPA are inflammatory mediators after myocardial ischemia and reperfusion and represent potential targets to prevent myocardial I/R injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: We aimed to determine the smallest changes in health-related quality of life (HRQoL) scores in the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire core 30 and the Brain Cancer Module (QLQ-BN20), which could be considered as clinically meaningful in brain cancer patients. Materials and methods: World Health Organisation performance status (PS) and mini-mental state examination (MMSE) were used as clinical anchors appropriate to related subscales to determine the minimal clinically important differences (MCIDs) in HRQoL change scores (range 0-100) in the QLQ-C30 and QLQ-BN20. A threshold of 0.2 standard deviation (SD) (small effect) was used to exclude anchor-based MCID estimates considered too small to inform interpretation. RESULTS: Based on PS, our findings support the following integer estimates of the MCID for improvement and deterioration, respectively: physical (6, 9), role (14, 12), and cognitive functioning (8, 8); global health status (7, 4*), fatigue (12, 9), and motor dysfunction (4*, 5). Anchoring with MMSE, cognitive functioning MCID estimates for improvement and deterioration were (11, 2*) and for communication deficit were (9, 7). Estimates with asterisks were <0.2 SD and were excluded from our MCID range of 5-14. CONCLUSION: These estimates can help clinicians evaluate changes in HRQoL over time, assess the value of a health care intervention and can be useful in determining sample sizes in designing future clinical trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The success of anatomic repair of Bankart lesion diminishes in the presence of a capsule stretching and/or attenuation is reported in a variable percentage of patients with a chronic gleno-humeral instability. We introduce a new arthroscopic stitch, the MIBA stitch, designed with a twofold aim: to improve tissue grip to reduce the risk of soft tissue tear, particularly cutting through capsular-labral tissue, to and address capsule-labral detachment and capsular attenuation using a double loaded suture anchor. This stitch is a combination of horizontal mattress stitch passing through the capsular-labral complex in a "south-to-north" direction and an overlapping single vertical suture passing through the capsule and labrum in a "east-to-west" direction. The mattress stitch is tied before the vertical stitch in order to reinforce the simple vertical stitch, improving grip and contact force between capsular-labral tissue and glenoid bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : La sécrétion de l'insuline en réponse au glucose circulant dans le sang est la fonction principale de la cellule β. La perte de cette fonction est une des caractéristiques du diabète de type 2. L'exocytose est une fonction cellulaire indispensable au renouvellement des composants lipidiques et protéiques de la membrane cellulaire, à la communication entre les cellules et au maintien d'un environnement adéquat. On peut distinguer deux types d'exocytose : l'exocytose constitutive et l'exocytose régulée. Cette dernière est déclenchée par des stimuli externes. L'exocytose régulée est contrôlée au niveau de la fusion des vésicules de sécrétion avec la membrane plasmique. Certains composants moléculaires impliqués dans ce processus font partie de la famille des GTPases Rab. Les deux membres de cette famille impliqués sont Rab3 et Rab27. Nous avons étudié le rôle de la GTPase Rab27 dans les cellules INS-1E, une lignée cellulaire pancréatique β qui sécrète de l'insuline de façon régulée. Nous avons trouvé que la diminution d'expression de la protéine en utilisant le technique de « RNA interference » diminue la sécrétion stimulée, mais que la distribution des granules n'est nullement affectées par ce changement d'activité intrinsèque. Un des effecteurs identifiés de cette GTPase est Slac2c/MyRIP. Cette protéine possède plusieurs domaines fonctionnels dont un qui lui permet de se lier à l'actine, constituant du cytosquelette cellulaire. L'ensemble de nos résultats suggèrent que Rab27 et MyRIP font partie d'un complexe permettant l'interaction de la granule de sécrétion avec le cytosquelette d'actine corticale et participent à la régulation des dernières étapes de l'exocytose d'insuline. Ensuite, nous avons étudié les phosphoinositides (PI). Les phosphoinositides sont d'importantes molécules impliquées dans le régulation du trafic vésiculaire. Nous avons trouvé que le phosphatidylinosito1-4-phosphate (PI4P) et le phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) augmentent la sécrétion sous l'action de 10µM de Ca2+ dans les cellules INS-1E perméabilisées avec la streptolysine-O. En plus, nous avons démontré que l'exocytose est diminuée dans les cellules intactes exprimant une protéine qui séquestre le PI(4,5)P2. Une diminution similaire est observée en diminuant l'expression de deux enzymes impliquées dans la production du PI(4,5)P2, la PI4Kinase β type III et la PIP5Kinase γ type I. Pour clarifier le mécanisme d'action des PI, nous avons investigué l'implication de trois cibles potentielles des PI, la PLD1, CAPS1 et Mint1. Pour ce faire, nous avons réduit le niveau d'expression endogène de ces protéines, ce qui inhibe la libération d'hormones provoquée par le glucose. Tout ceci indique donc que la production du PI(4,5)P2 est nécessaire pour le contrôle de la sécrétion et suggère qu'une partie de l'effet du PI sur la sécrétion pourrait être exercé par l'activation de la PLD1, CAPS1 et Mint1. Abstract Insulin release from pancreatic β-cells plays an essential role in the achievement of blood glucose homeostasis and defects in the regulation of this process lead to profound metabolic disorders and hyperglycaemia (eg. type 2 diabetes). Almost every cell in our organism releases proteins and other biological compounds using a fundamental cellular process known as constitutive exocytosis. In exocrine and endocrine glands, the cells are endowed with an additional and more refined release mechanism directly tuned by extracellular signals. This process, referred to as regulated exocytosis, ensures the timely delivery of molecules such as peptide hormones and digestive enzymes to match the moment¬-to-moment requirements of the organism. Some of the molecular components involved in this process have been identified, including Rab3 and Rab27, two GTPases that regulate the final steps of secretion in many cells. We investigated the involvement of Rab27 GTPase in the secretory process of the insulin-secreting cell line INS-1E. We found that selective reduction of Rab27 expression by RNA interference did not alter granule distribution but impaired exocytosis triggered by insulin secretagogues. Screening for potential effectors revealed that Slac2c/MyRIP is associated with granules and attenuation of Slac2c expression severely impaired hormone release. This protein contains several functional domains, including, a binding domain for the cellular cytoskeleton constituent actin. Taken together our data suggest the Rab27 and MyRIP are part of a complex mediating the interaction of secretory granules with cortical cytoskeleton and participate to the regulation of the final steps in insulin exoctytosis. In the second part of the thesis, we studied phosphoinositides (PI). Phosphoinositides are important molecules involved in the regulation of vesicular trafficking. We found that phosphatidylinosito1-4-phosphate (PI4P) and phosphatidylinosito1-4,5-biphosphate (PI(4,5)P2) increase the secretory response triggered by 10µM Ca2+ in streptolysin-O permeabilized insulin-secreting INS-1E cells. In addition, nutrient-induced exocytosis was diminished in intact cells expressing constructs that sequester PI(4,5)P2. A similar decrease was observed after silencing of two enzymes involved in PI(4,5)P2 production, type III PI4Kinase β and type I PIP5Kinase γ, by RNA interference. To clarify the mechanism of action of PI, we investigated the involvement in the regulation of exocytosis of three potential PI targets, PLD1, CAPS1 and Mint1. Transfection of cells with silencers capable of reducing the endogenous levels of these proteins inhibited hormone release elicited by glucose. Our data indicate that the production PI(4,5)P2 is necessary for proper control of p-cell secretion and suggest that at least part of the effects of PI on insulin exocytosis could be exerted through the activation of PLD1, CAPS1 and Mint1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deregulation of the ubiquitin/proteasome system has been implicated in the pathogenesis of many human diseases, including cancer. Ubiquitin-specific proteases (USP) are cysteine proteases involved in the deubiquitination of protein substrates. Functional connections between USP7 and essential viral proteins and oncogenic pathways, such as the p53/Mdm2 and phosphatidylinositol 3-kinase/protein kinase B networks, strongly suggest that the targeting of USP7 with small-molecule inhibitors may be useful for the treatment of cancers and viral diseases. Using high-throughput screening, we have discovered HBX 41,108, a small-molecule compound that inhibits USP7 deubiquitinating activity with an IC(50) in the submicromolar range. Kinetics data indicate an uncompetitive reversible inhibition mechanism. HBX 41,108 was shown to affect USP7-mediated p53 deubiquitination in vitro and in cells. As RNA interference-mediated USP7 silencing in cancer cells, HBX 41,108 treatment stabilized p53, activated the transcription of a p53 target gene without inducing genotoxic stress, and inhibited cancer cell growth. Finally, HBX 41,108 induced p53-dependent apoptosis as shown in p53 wild-type and null isogenic cancer cell lines. We thus report the identification of the first lead-like inhibitor against USP7, providing a structural basis for the development of new anticancer drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cross-recognition of peptides by cytotoxic T lymphocytes is a key element in immunology and in particular in peptide based immunotherapy. Here we develop three-dimensional (3D) quantitative structure-activity relationships (QSARs) to predict cross-recognition by Melan-A-specific cytotoxic T lymphocytes of peptides bound to HLA A*0201 (hereafter referred to as HLA A2). First, we predict the structure of a set of self- and pathogen-derived peptides bound to HLA A2 using a previously developed ab initio structure prediction approach [Fagerberg et al., J. Mol. Biol., 521-46 (2006)]. Second, shape and electrostatic energy calculations are performed on a 3D grid to produce similarity matrices which are combined with a genetic neural network method [So et al., J. Med. Chem., 4347-59 (1997)] to generate 3D-QSAR models. The models are extensively validated using several different approaches. During the model generation, the leave-one-out cross-validated correlation coefficient (q (2)) is used as the fitness criterion and all obtained models are evaluated based on their q (2) values. Moreover, the best model obtained for a partitioned data set is evaluated by its correlation coefficient (r = 0.92 for the external test set). The physical relevance of all models is tested using a functional dependence analysis and the robustness of the models obtained for the entire data set is confirmed using y-randomization. Finally, the validated models are tested for their utility in the setting of rational peptide design: their ability to discriminate between peptides that only contain side chain substitutions in a single secondary anchor position is evaluated. In addition, the predicted cross-recognition of the mono-substituted peptides is confirmed experimentally in chromium-release assays. These results underline the utility of 3D-QSARs in peptide mimetic design and suggest that the properties of the unbound epitope are sufficient to capture most of the information to determine the cross-recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.