152 resultados para fluorescence in situ hybridization (FISH)
Resumo:
Ductal carcinoma in situ (DCIS), accounting for 15-25% of all breast cancers, is frequently diagnosed by mammographic examination. This heterogeneous disease requires a rigorous local treatment based, in about two-third of cases, on conservative surgery and radiotherapy. DCIS are currently classified on the basis of nuclear grade. Most lesions, and especially high nuclear grade DCIS, are limited to one quadrant. Micropapillary DCIS are likely to be of larger size/extent and thus a conservative approach is often difficult. A careful pathological examination of an oriented excisional biopsy is a pre-requisite for optimal therapy.
Resumo:
Microtubule-associated proteins (MAPs) are essential components necessary for the early growth process of axons and dendrites, and for the structural organization within cells. Both MAP2 and MAP5 are involved in these events, MAP2 occupying a role predominantly in dendrites, and MAP5 being involved in both axonal and dendritic growth. In the chick dorsal root ganglia, pseudo-unipolar sensory neurons have a T-shaped axon and are devoid of any dendrites. Therefore, they offer an ideal model to study the differential expression of MAPs during DRG development, specifically during axonal growth. In this study we have analyzed the expression and localization of MAP2 and MAP5 isoforms during chick dorsal root ganglia development in vivo, and in cell culture. In DRG, both MAPs appeared as early as E5. MAP2 consists of the 3 isoforms MAP2a, b and c. On blots, no MAP2a could be found at any stage. MAP2b increased between E6 and E10 and thereafter diminished slowly in concentration, while MAP2c was found between stages E6 and E10 in DRG. By immunocytochemistry, MAP2 isoforms were mainly located in the neuronal perikarya and in the proximal portion of axons, but could not be localized to distal axonal segments, nor in sciatic nerve at any developmental stage. On blots, MAP5 was present in two isoforms, MAP5a and MAP5b. The concentration of MAP5a was highest at E6 and then decreased to a low level at E18. In contrast, MAP5b increased between E6 and E10, and rapidly decreased after E14. Only MAP5a was present in sciatic nerve up to E14. Immunocytochemistry revealed that MAP5 was localized mainly in axons, although neuronal perikarya exhibited a faint immunostaining. Strong staining of axons was observed between E10 and E14, at a time coincidental to a period of intense axonal outgrowth. After E14 immunolabeling of MAP5 decreased abruptly. In DRG culture, MAP2 was found exclusively in the neuronal perikarya and the most proximal neurite segment. In contrast, MAP5 was detected in the neuronal cell bodies and all along their neurites. In conclusion, MAP2 seems involved in the early establishment of the cytoarchitecture of cell bodies and the proximal axon segment of somatosensory neurons, while MAP5 is clearly related to axonal growth.
Resumo:
Purpose: We investigate a new heat delivery technique for the local treatment of solid tumors. The technique involves injecting a formulation that solidifies to form an implant in situ. This implant entraps superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microbeads for magnetically induced moderate hyperthermia. Particle entrapment prevents phagocytosis and distant migration of SPIONs. The implant can be repeatedly heated by magnetic induction. Methods: We evaluated heating and treatment efficacies by means of thermometry and survival studies in nude mice carrying subcutaneous human colocarcinomas. At day 1, we injected the formulation into the tumor. At day 2, a single 20-min hyperthermia treatment was delivered by 141-kHz magnetic induction using field strengths of 9 to 12 mT under thermometry. Results: SPIONs embedded in silica microbeads were effectively confined within the implant at the injection site. Heat-induced necro-apoptosis was assessed by histology on day 3. On average, 12 mT resulted in tumor temperature of 47.8 degrees C, and over 70% tumor necrosis that correlated to the heat dose (AUC = 282 degrees C.min). In contrast, a 9-mT field strength induced tumoral temperature of 40 degrees C (AUC = 131 degrees C.min) without morphologically identifiable necrosis. Survival after treatment with 10.5 or 12 mT fields was significantly improved compared to non-implanted and implanted controls. Median survival times were 27 and 37 days versus 12 and 21 days respectively. Conclusion: Five of eleven mice (45%) of the 12 mT group survived one year without any tumor recurrence, holding promise for tumor therapy using magnetically induced moderate hyperthermia through injectable implants.
Resumo:
Protein tyrosine kinases are pivotal in central nervous tissue development and maintenance. Here we focus on the expression of Ehk-1, a novel Elk-related receptor tyrosine kinase. Ehk-1 gene expression is observed in the developing and adult central nervous system and is highly regulated throughout development at both the messenger RNA and protein levels. Three messenger RNA transcripts of 8.5, 5.9 and 5.1 kb are detectable in the rat brain and a variety of splice possibilities have been identified. However, a major protein species of around M(r) 120,000 predominates throughout development. Ehk-1 messenger RNA and protein levels are highest in the first postnatal week. By in situ messenger RNA hybridization the gene is expressed by all neurons of the adult brain, but mostly in the hippocampus, cerebral cortex and large neurons of the deep cerebellar nuclei, as well as the Purkinje and granular cells of the cerebellum. At earlier stages of development, transcripts are most prominent in the periventricular germinal layers of the brain. Immunohistochemistry reveals a pronounced membrane associated protein expression in immature neurons. In the adult animal, peak reactivity was found in the neuropil with sparing of most perikarya. The spatial and temporal pattern of ehk-1 gene expression suggests a role in both the development and maintenance of differentiated neurons of the central nervous system.
Resumo:
AGAT and GAMT, the two enzymes of the creatine synthesis pathway, are well expressed within CNS, suggesting autonomous brain creatine synthesis. This contradicts SLC6A8 deficiency, which causes creatine deficiency despite CNS expression of AGAT and GAMT. We hypothesized that AGAT and GAMT were not co-expressed by brain cells, and that guanidinoacetate must be transported between cells to allow creatine synthesis. We finely analyzed the cell-to-cell co-expression of AGAT, GAMT and SLC6A8 in various regions of rat CNS, and showed that in most structures, cells co-expressing AGAT+GAMT (equipped for autonomous creatine synthesis) were in low proportions (<20%). Using reaggregating brain cell cultures, we also showed that brain cells take up guanidinoacetate and convert it to creatine. Guanidinoacetate uptake was competed by creatine. This suggests that in most brain regions, guanidinoacetate is transported from AGAT- to GAMT-expressing cells through SLC6A8 to allow creatine synthesis, thereby explaining creatine deficiency in SLC6A8-deficient CNS.
Resumo:
Dermatophytes are the main cause of superficial mycoses. These fungi have the capacity to invade keratinized tissue of humans or animals to produce infections that are generally restricted to the corneocytes of the skin, hair, and nails. Nevertheless, it is common to obtain negative results from fungal cultures of dermatological specimens where direct mycological examination showed fungal elements (30-40%). However, correct identification of the isolated dermatophytes from Tinea is important to choose the appropriate treatment. Therefore, we aim to develop a rapid polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay based on 28S rDNA that is able to identify dermatophytes species in positive dermatological samples. PCR-RFLP identification of dermatophytes in skin or hair allowed validation of the results obtained in culture. It was also possible to identify the infectious dermatophytes when direct hair/ skin mycological examination showed fungal elements, but negative results were obtained from fungal culture. As a conclusion, PCR methods may provide significant benefits in the rapid diagnosis of Tinea. First, there is an increase in sensitivity of dermatophytes identification when enough material is available. Secondly, identification of the infecting agent can be obtained in 24 hours with PCR-RFLP or sequencing, whereas results from fungal cultures can take 2-3 weeks.
Resumo:
Sensory information is an important factor in shaping neuronal circuits during development and adulthood. In the barrel cortex of adult rodents, cells from layer IV are able to adapt their functional state to an increased flow of sensory information from the mystacial whisker follicles. Previous studies in our group have shown that whisker stimulation induces the formation of inhibitory synapses in the corresponding barrel (Knott et al., 2002) and decreases neuronal responses toward the deflection of the stimulated whisker (Quairiaux et al., 2007). Together these observations have turned the barrel cortex into a model to study homeostatic plasticity. At the cellular level, neuronal activity triggers intracellular signaling cascades leading to a transcriptional response. To further characterize the molecular pathways involved in the synaptic changes after whisker stimulation in the adult mouse, a previous doctoral student in our group performed a microarray analysis on laser-dissected barrels in sections through layer IV. This study identified the regulation (up and down) of a series of genes in the stimulated barrels (thesis of Johnston-Wenger, 2010). We here focused on ten genes that presented the highest fold change according to the microarray analysis. Out of these genes, 7 are known as neuronal activity-dependent genes (Tnncl, Nptx2, Sorcs3, Ptgs2, Nr4a2, Npas4 and Adcyapl) whereas three have so far not been related to neuronal plasticity (Scn7a, Pcdhl5 and Cede3). The study aimed at confirming the results of the microarray analysis and localizing molecular modifications in the stimulated barrel column at the cellular level. In situ hybridization for Pcdhl5 after different periods of whisker stimulation (3, 6, 9, 15, 24 hrs) allowed us to confirm that the 1.25 fold change used for the microarray analysis is an appropriate threshold for considering a regulation significant after sensory-stimulation. Moreover, we confirmed with in situ hybridization a significant upregulation of the genes of interest in the stimulated barrels. In situ hybridization and immunohistochemistry allowed us to observe the distribution of the genes of interest and the corresponding protein products at the cellular level. Three observations were made: 1) alterations of the expression was restricted to the stimulated barrels for all genes tested; 2) within a barrel column not all cells responded to whisker stimulation with an altered gene expression; 3) in the stimulated barrels, two different patterns of mRNA and protein expression can be distinguished. We hypothesize that this segregation of the activity-induced gene expression reflects the segregation of the two principal thalamocortical pathways conveying the sensory information to the barrel cortex. Moreover, only neurons reaching the critical threshold will modify their gene expression program resulting in structural as well as physiological modifications that prevent the subsequent propagation of the excess of excitation to the postsynaptic targets. The activity-induced gene expression is therefore adapted in a cell-type-specific manner to induce a homeostatic response to the entire neuronal network involved in the integration of the sensory information. This to our knowledge the first study showing the distinct, but complementary contribution of the two thalamocortical pathways in experience-dependent plasticity in the adult mouse barrel cortex. -- L'information sensorielle nous permet de continuellement façonner nos circuits neuronaux autant durant le développement qu'à l'âge adulte. Chez le rongeur l'information sensorielle perçue par les vibrisses est intégrée au niveau du cortex somatosensoriel primaire (appelé en anglais « barrel cortex ») dont les cellules de la couche IV sont capables d'adapter leur état fonctionnel en réponse à une augmentation d'activité neuronale. Ce modèle expérimental a permis à notre groupe de recherche d'observer des changements rapides du circuit neuronal en fonction de l'activité sensorielle. En effet, la stimulation continue d'une vibrisse d'une souris adulte pendant 24 heures induit non seulement un remaniement synaptique (Knott et al., 2002), mais également des changements physiologiques au niveau des neurones du tonneau correspondant (Quairiaux et al., 2007). Ces observations nous permettent d'affirmer que le « barrel cortex » est un modèle approprié pour y étudier la plasticité synaptique. Au niveau cellulaire, l'activité neuronale déclenche des cascades de signalisation intracellulaire résultant en une réponse transcriptionnelle. Afin de caractériser les voies moléculaires impliquées dans la plasticité synaptique, une puce à ARN nous a permis de comparer l'expression de gènes entre un tonneau correspondant à une vibrisse stimulée et un tonneau d'une vibrisse non-stimulée (Nathalie). Cette analyse a révélé un certain nombre de gènes régulés de manière positive ou négative par l'augmentation de l'activité neuronale. Nous nous sommes concentrés sur 10 gènes dont l'expression est fortement régulée. L'expression de sept d'entre eux a déjà été démontrée comme dépendante de l'activité neuronale (Tnncl, Nptx2, Sorcs3, Ptgs2, Nr4a2, Npas4 otAdcyapl) alors que l'expression des trois autres (Scn7a, Pcdhl5 et Cedei) n'a pour le moment pas encore été liée à la plasticité neuronale. Le but de cette thèse est de confirmer les résultats de la puce à ARN et de déterminer dans quel type cellulaire ces gènes sont exprimés. L'hybridation in situ pour le gène Pcdhl5, après différentes périodes de stimulation des vibrisses (3, 6, 9, 15 et 24 heures), nous a permis de confirmer que le seuil de 1.25x utilisé dans l'analyse de la puce à ARN est approprié pour considérer qu'un gène est régulé de manière significative par la stimulation sensorielle. Nous avons également pu confirmer à l'aide de cette technique que la stimulation sensorielle augmente significativement l'expression de ces dix gènes. L'expression de ces gènes au niveau cellulaire a été observée à l'aide des techniques d'hybridation in situ et d'immunohistochimie. Trois observations ont été faites : 1) la régulation de ces gènes est restreinte aux tonneaux correspondants aux vibrisses stimulées ; 2) au niveau d'une colonne corticale correspondant aux vibrisses stimulées, seules certaines cellules présentent une altération de leur expression génique ; 3) au niveau des tonneaux stimulés, deux profils d'expression d'ARNm et de protéines sont observés. Notre hypothèse est que cette distribution pourrait correspondre à la terminaison ségrégée des deux voies thalamocortical qui amènent l'information sensorielle dans le cortex cérébral. De plus, seul les neurones atteignant le seuil critique d'activation modifient leur expression génique en réponse à la stimulation sensorielle. Ces changements d'expression géniques vont permettre à la cellule de modifier ses propriétés structurales et physiologiques de manière a prevenir la propagation d'un excès d'activité neuronale au niveau de ses cibles postsynaptics. L'activité neuronale agit donc spécifiquement sur certains types cellulaires de maniere a induire une réponse homéostatique au niveau du réseau neuronal impliqué dans l'integration de l'information sensorielle. Nos travaux démontrent pour une première fois que les deux voies sensorielles contribuent d'une manière distincte et complémentaire à la plasticité corticale induite par un changement de l'activité sensorielle chez la souris adulte.
Resumo:
TMPRSS3 encodes a transmembrane serine protease that contains both LDLRA and SRCR domains and is mutated in non-syndromic autosomal recessive deafness (DFNB8/10). To study its function, we cloned the mouse ortholog which maps to Mmu17, which is structurally similar to the human gene and encodes a polypeptide with 88% identity to the human protein. RT-PCR and RNA in situ hybridization on rat and mouse cochlea revealed that Tmprss3 is expressed in the spiral ganglion, the cells supporting the organ of Corti and the stria vascularis. RT-PCR on mouse tissues showed expression in the thymus, stomach, testis and E19 embryos. Transient expression of wild-type or tagged TMPRSS3 protein showed a primary localization in the endoplasmic reticulum. The epithelial amiloride-sensitive sodium channel (ENaC), which is expressed in many sodium-reabsorbing tissues including the inner ear and is regulated by membrane-bound channel activating serine proteases (CAPs), is a potential substrate of TMPRSS3. In the Xenopus oocyte expression system, proteolytic processing of TMPRSS3 was associated with increased ENaC mediated currents. In contrast, 6 TMPRSS3 mutants (D103G, R109W, C194F, W251C, P404L, C407R) causing deafness and a mutant in the catalytic triad of TMPRSS3 (S401A), failed to undergo proteolytic cleavage and activate ENaC. These data indicate that important signaling pathways in the inner ear are controlled by proteolytic cleavage and suggest: (i) the existence of an auto-catalytic processing by which TMPRSS3 would become active, and (ii) that ENaC could be a substrate of TMPRSS3 in the inner ear.
Resumo:
Ochratoxin A (OTA), a mycotoxin and widespread food contaminant, is known for its patent nephrotoxicity and potential neurotoxicity. Previous observations in vitro showed that in the CNS, glial cells were particularly sensitive to OTA. In the search for the molecular mechanisms underlying OTA neurotoxicity, we investigated the relationship between OTA toxicity and glial reactivity, in serum-free aggregating brain cell cultures. Using quantitative reverse transcriptase-polymerase chain reaction to analyze changes in gene expression, we found that in astrocytes, non cytotoxic concentrations of OTA down-regulated glial fibrillary acidic protein, while it up-regulated vimentin and the peroxisome proliferator-activated receptor-gamma expression. OTA also up-regulated the inducible nitric oxide synthase and the heme oxygenase-1. These OTA-induced alterations in gene expression were more pronounced in cultures at an advanced stage of maturation. The natural peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-delta(12,14) prostaglandin J2, and the cyclic AMP analog, bromo cyclic AMP, significantly attenuated the strong induction of peroxisome proliferator-activated receptor-gamma and inducible nitric oxide synthase, while they partially reversed the inhibitory effect of OTA on glial fibrillary acidic protein. The present results show that OTA affects the cytoskeletal integrity of astrocytes as well as the expression of genes pertaining to the brain inflammatory response system, and suggest that a relationship exists between the inflammatory events and the cytoskeletal changes induced by OTA. Furthermore, these results suggest that, by inducing an atypical glial reactivity, OTA may severely affect the neuroprotective capacity of glial cells.
Resumo:
Islet-brain 1 (IB1), a regulator of the pancreatic beta-cell function in the rat, is homologous to JIP-1, a murine inhibitor of c-Jun amino-terminal kinase (JNK). Whether IB1 and JIP-1 are present in humans was not known. We report the sequence of the 2133-bp human IB1 cDNA, the expression, structure, and fine-mapping of the human IB1 gene, and the characterization of an IB1 pseudogene. Human IB1 is 94% identical to rat IB1. The tissue-specific expression of IB1 in human is similar to that observed in rodent. The IB1 gene contains 12 exons and maps to chromosome 11 (11p11.2-p12), a region that is deleted in DEFECT-11 syndrome. Apart from an IB1 pseudogene on chromosome 17 (17q21), no additional IB1-related gene was found in the human genome. Our data indicate that the sequence and expression pattern of IB1 are highly conserved between rodent and human and provide the necessary tools to investigate whether IB1 is involved in human diseases.
Resumo:
Pseudomonas fluorescens strain CHA0 is able to protect plants against a variety of pathogens, notably by producing the two antimicrobial compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). The regulation of the expression of these compounds is affected by many biotic factors, such as fungal pathogens, rhizosphere bacteria as well as plant species. Therefore, the influence of some plant phenolic compounds on the expression of DAPG and PLT biosynthetic genes has been tested using GFP-based reporter, monitored by standard fluometry and flow cytometry. In situ experiments were also performed with cucumber plants. We found that several plant metabolites such as IAA and umbelliferone are able to modify significantly the expression of DAPG and PLT. The use of flow cytometry with autofluorescents proteins seems to be a promising method to study rhizobacteria-plant interactions.
Resumo:
Translocations are known to affect the expression of genes at the breakpoints and, in the case of unbalanced translocations, alter the gene copy number. However, a comprehensive understanding of the functional impact of this class of variation is lacking. Here, we have studied the effect of balanced chromosomal rearrangements on gene expression by comparing the transcriptomes of cell lines from controls and individuals with the t(11;22)(q23;q11) translocation. The number of differentially expressed transcripts between translocation-carrying and control cohorts is significantly higher than that observed between control samples alone, suggesting that balanced rearrangements have a greater effect on gene expression than normal variation. Many of the affected genes are located along the length of the derived chromosome 11. We show that this chromosome is concomitantly altered in its spatial organization, occupying a more central position in the nucleus than its nonrearranged counterpart. Derivative 22-mapping chromosome 22 genes, on the other hand, remain in their usual environment. Our results are consistent with recent studies that experimentally altered nuclear organization, and indicated that nuclear position plays a functional role in regulating the expression of some genes in mammalian cells. Our study suggests that chromosomal translocations can result in hitherto unforeseen, large-scale changes in gene expression that are the consequence of alterations in normal chromosome territory positioning. This has consequences for the patterns of gene expression change seen during tumorigenesis-associated genome instability and during the karyotype changes that lead to speciation.
Resumo:
The in situ deposition of zinc oxide on gold nanoparticles in aqueous solution has been here successfully applied in the field of fingermark detection on various non-porous surfaces. In this article, we present the improvement of the multimetal deposition, an existing technique limited up to now to non-luminescent results, by obtaining luminescent fingermarks with very good contrast and details. This is seen as a major improvement in the field in terms of selectivity and sensitivity of detection, especially on black surfaces.
Resumo:
Purpose: In this study, we investigated the expression of the gene encoding beta-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including beta-galactosidase-1 (Glb1), beta-galactosidase-1-like (Glb1l), and beta-galactosidase-1-like protein 2 (Glb1l2).Methods: The structural features of Glb1l3 were assessed using bioinformatic tools. mRNA expression of Glb-related genes was investigated by oligonucleotide microarray, real-time PCR, and reverse transcription (RT) -PCR. The localized expression of Glb1l3 was assessed by combined in situ hybridization and immunohistochemistry.Results: Glb1l3 was the only Glb-related member strongly downregulated in Rpe65(-/-) retinas before the onset and during progression of the disease. Glb1l3 mRNA was only expressed in the retinal layers and the RPE/choroid. The other Glb-related genes were ubiquitously expressed in different ocular tissues, including the cornea and lens. In the healthy retina, expression of Glb1l3 was strongly induced during postnatal retinal development; age-related increased expression persisted during adulthood and aging.Conclusions: These data highlight early-onset downregulation of Glb1l3 in Rpe65-related disease. They further indicate that impaired expression of Glb1l3 is mostly due to the absence of the chromophore 11-cis retinal, suggesting that Rpe65 deficiency may have many metabolic consequences in the underlying neuroretina.
Resumo:
PPARs are a family of nuclear hormone receptors involved in various processes that could influence ovarian function. We investigated the cellular localization and expression of PPARs during follicular development in ovarian tissue collected from rats 0, 6, 12, 24, and 48 h post-PMSG. A second group of animals received human CG (hCG) 48 h post-PMSG. Their ovaries were removed 0, 4, 8, 12, and 24 h post-hCG to study the periovulatory period. mRNAs corresponding to the PPAR isotypes (alpha, delta, and gamma) were localized by in situ hybridization. Changes in the levels of mRNA for the PPARs were determined by ribonuclease protection assays. PPAR gamma mRNA was localized primarily to granulosa cells, and levels of expression did not change during follicular development. Four hours post-hCG, levels of mRNA for PPAR gamma decreased (P < 0.05) but not uniformly in all follicles. At 24 h post-hCG, levels of PPAR gamma mRNA were reduced 64%, but some follicles maintained high expression. In contrast, mRNAs for PPAR alpha and delta were located primarily in theca and stroma, and their levels did not change during the intervals studied. To investigate the physiologic significance of PPAR gamma in the ovary, granulosa cells from PMSG-primed rats were cultured for 48 h with prostaglandin J(2) (PGJ(2)) and ciglitazone, PPAR gamma activators. Both compounds increased progesterone and E2 secretion (P < 0.05). These data suggest that PPAR gamma is involved in follicular development, has a negative influence on the luteinization of granulosa cells, and/or regulates the periovulatory shift in steroid production. The more general and steady expression of PPARs alpha and delta indicate that they may play a role in basal ovarian function.